Λc⁺ → p π⁺ K⁻#

Decay definition#

Hide code cell source
PARTICLES = load_particles()
for name in [
    "K*(1410)~0",
    "K(2)*(1430)~0",
    "K*(1680)~0",
    "Delta(1620)++",
    "Delta(1900)++",
    "Delta(1910)++",
    "Delta(1920)++",
    "Lambda(1800)",
    "Lambda(1810)",
    "Lambda(1890)",
]:
    PARTICLES.remove(PARTICLES[name])
STM = qrules.StateTransitionManager(
    initial_state=["Lambda(c)+"],
    final_state=["p", "K-", "pi+"],
    mass_conservation_factor=3,
    allowed_intermediate_particles=["K", "Delta", "Lambda"],
    particle_db=PARTICLES,
    max_angular_momentum=2,
    formalism="canonical-helicity",
)
STM.set_allowed_interaction_types([qrules.InteractionType.STRONG], node_id=1)
problem_sets = STM.create_problem_sets()
REACTION = STM.find_solutions(problem_sets)
REACTION = normalize_state_ids(REACTION)
dot = qrules.io.asdot(REACTION, collapse_graphs=True)
graphviz.Source(dot)
Propagating quantum numbers: 100%
 36/36 [00:00<00:00, 50.16it/s]
_images/2ca90648340bc196f3c9bf227c679323be3e4e0c81215af0b2361f2dbdc00449.svg
Hide code cell source
DECAY = to_three_body_decay(REACTION.transitions, min_ls=True)
Markdown(as_markdown_table([DECAY.initial_state, *DECAY.final_state.values()]))

index

name

LaTeX

JP

mass (MeV)

width (MeV)

0

Lambda(c)+

Λc+

12+

2,286

0

1

p

p

12+

938

0

2

K-

K

0

493

0

3

pi+

π+

0

139

0

Hide code cell source
resonances = sorted(
    {t.resonance for t in DECAY.chains},
    key=lambda p: (p.name[0], p.mass),
)
resonance_names = [p.name for p in resonances]
Markdown(as_markdown_table(resonances))

name

LaTeX

JP

mass (MeV)

width (MeV)

Delta(1232)++

Δ(1232)++

32+

1,232

117

Delta(1600)++

Δ(1600)++

32+

1,570

250

Delta(1700)++

Δ(1700)++

32

1,710

300

K(0)*(700)~0

K0(700)0

0+

845

468

K*(892)~0

K(892)0

1

895

47

K(0)*(1430)~0

K0(1430)0

0+

1,430

270

K(2)*(1980)~0

K2(1980)0

2+

1,990

348

Lambda(1405)

Λ(1405)

12

1,405

50

Lambda(1520)

Λ(1520)

32

1,519

16

Lambda(1600)

Λ(1600)

12+

1,600

200

Lambda(1670)

Λ(1670)

12

1,674

30

Lambda(1690)

Λ(1690)

32

1,690

70

Lambda(2000)

Λ(2000)

12

2,000

210

Hide code cell source
Latex(aslatex(DECAY, with_jp=True))
Λc+[12+]S=3/2L=1(Δ(1232)++[32+]S=1/2L=1p[12+]π+[0])K[0]Λc+[12+]S=3/2L=1(Δ(1600)++[32+]S=1/2L=1p[12+]π+[0])K[0]Λc+[12+]S=3/2L=1(Δ(1700)++[32]S=1/2L=2p[12+]π+[0])K[0]Λc+[12+]S=1/2L=0(K0(1430)0[0+]S=0L=0K[0]π+[0])p[12+]Λc+[12+]S=1/2L=0(K0(700)0[0+]S=0L=0K[0]π+[0])p[12+]Λc+[12+]S=3/2L=1(K2(1980)0[2+]S=0L=2K[0]π+[0])p[12+]Λc+[12+]S=1/2L=0(K(892)0[1]S=0L=1K[0]π+[0])p[12+]Λc+[12+]S=1/2L=0(Λ(1405)[12]S=1/2L=0p[12+]K[0])π+[0]Λc+[12+]S=3/2L=1(Λ(1520)[32]S=1/2L=2p[12+]K[0])π+[0]Λc+[12+]S=1/2L=0(Λ(1600)[12+]S=1/2L=1p[12+]K[0])π+[0]Λc+[12+]S=1/2L=0(Λ(1670)[12]S=1/2L=0p[12+]K[0])π+[0]Λc+[12+]S=3/2L=1(Λ(1690)[32]S=1/2L=2p[12+]K[0])π+[0]Λc+[12+]S=1/2L=0(Λ(2000)[12]S=1/2L=0p[12+]K[0])π+[0]

Lineshapes for dynamics#

Hide code cell source
s, m0, Γ0, m1, m2 = sp.symbols("s m0 Gamma0 m1 m2", nonnegative=True)
m_top, m_spec = sp.symbols(R"m_\mathrm{top} m_\mathrm{spectator}", nonnegative=True)
R_dec, R_prod = sp.symbols(R"R_\mathrm{res} R_{\Lambda_c}", nonnegative=True)
l_Λc, l_R = sp.symbols(R"l_{\Lambda_c} l_R", integer=True, nonnegative=True)
bw = BreitWignerMinL(s, m_top, m_spec, m0, Γ0, m1, m2, l_R, l_Λc, R_dec, R_prod)
Latex(aslatex({bw: bw.doit(deep=False)}))
RlR,lΛcBW(s)=FlR(Rrespm1,m2(s))FlR(Rrespm1,m2(m02))FlΛc(RΛcqmtop,mspectator(s))FlΛc(RΛcqmtop,mspectator(m02))(pm1,m2(s)pm1,m2(m02))lR(qmtop,mspectator(s)qmtop,mspectator(m02))lΛcm02im0ΓlR(s)s
Hide code cell source
def formulate_breit_wigner(
    decay_chain: ThreeBodyDecayChain,
) -> tuple[BreitWignerMinL, dict[sp.Symbol, float]]:
    s = get_mandelstam_s(decay_chain.decay_node)
    child1_mass, child2_mass = map(create_mass_symbol, decay_chain.decay_products)
    l_dec = sp.Rational(decay_chain.outgoing_ls.L)
    l_prod = sp.Rational(decay_chain.incoming_ls.L)
    parent_mass = sp.Symbol(f"m_{{{decay_chain.parent.latex}}}", nonnegative=True)
    spectator_mass = sp.Symbol(f"m_{{{decay_chain.spectator.latex}}}", nonnegative=True)
    resonance_mass = sp.Symbol(f"m_{{{decay_chain.resonance.latex}}}", nonnegative=True)
    resonance_width = sp.Symbol(
        Rf"\Gamma_{{{decay_chain.resonance.latex}}}", nonnegative=True
    )
    R_dec = sp.Symbol(R"R_\mathrm{res}", nonnegative=True)
    R_prod = sp.Symbol(R"R_{\Lambda_c}", nonnegative=True)
    parameter_defaults = {
        parent_mass: decay_chain.parent.mass,
        spectator_mass: decay_chain.spectator.mass,
        resonance_mass: decay_chain.resonance.mass,
        resonance_width: decay_chain.resonance.width,
        child1_mass: decay_chain.decay_products[0].mass,
        child2_mass: decay_chain.decay_products[1].mass,
        # https://github.com/ComPWA/polarimetry/pull/11#issuecomment-1128784376
        R_dec: 1.5,
        R_prod: 5,
    }
    dynamics = BreitWignerMinL(
        s,
        parent_mass,
        spectator_mass,
        resonance_mass,
        resonance_width,
        child1_mass,
        child2_mass,
        l_dec,
        l_prod,
        R_dec,
        R_prod,
    )
    return dynamics, parameter_defaults

Model formulation#

model_builder = DalitzPlotDecompositionBuilder(DECAY, min_ls=(False, True))
for chain in model_builder.decay.chains:
    model_builder.dynamics_choices.register_builder(chain, formulate_breit_wigner)
model = model_builder.formulate(reference_subsystem=1)
model.intensity
λ0=1/21/2λ1=1/21/2λ2=0λ3=0|λ0=1/21/2λ1=1/21/2λ2=0λ3=0Aλ0,λ1,λ2,λ31dλ1,λ112(ζ1(1)1)dλ0,λ012(ζ1(1)0)+Aλ0,λ1,λ2,λ32dλ1,λ112(ζ2(1)1)dλ0,λ012(ζ2(1)0)+Aλ0,λ1,λ2,λ33dλ1,λ112(ζ3(1)1)dλ0,λ012(ζ3(1)0)|2
Hide code cell source
Latex(aslatex(model.amplitudes).replace(R"\sum_", R"\sum\limits_"))
Hide code cell output
A12,12,0,01=λR=112δ12,λR+12R1,0BW(σ1)C0,0,12,λR+1212,λR+12C1,λR,12,1212,λR+12HK(892)0,0,12LS,productionHK(892)0,0,0decaydλR,01(θ23)2+λR=02δ12,λR+12R0,0BW(σ1)C0,0,12,λR+1212,λR+12C0,λR,12,1212,λR+12HK0(1430)0,0,12LS,productionHK0(1430)0,0,0decaydλR,00(θ23)2+λR=02δ12,λR+12R0,0BW(σ1)C0,0,12,λR+1212,λR+12C0,λR,12,1212,λR+12HK0(700)0,0,12LS,productionHK0(700)0,0,0decaydλR,00(θ23)2+λR=226δ12,λR+12R2,1BW(σ1)C1,0,32,λR+1212,λR+12C2,λR,12,1232,λR+12HK2(1980)0,1,32LS,productionHK2(1980)0,0,0decaydλR,02(θ23)2A12,12,0,02=λR=3/23/26δ12λRR1,1BW(σ2)C1,0,32,λR12,λRC32,λR,0,032,λRHΔ(1232)++,1,32LS,productionHΔ(1232)++,0,12decaydλR,1232(θ31)2+λR=3/23/26δ12λRR1,1BW(σ2)C1,0,32,λR12,λRC32,λR,0,032,λRHΔ(1600)++,1,32LS,productionHΔ(1600)++,0,12decaydλR,1232(θ31)2+λR=3/23/26δ12λRR2,1BW(σ2)C1,0,32,λR12,λRC32,λR,0,032,λRHΔ(1700)++,1,32LS,productionHΔ(1700)++,0,12decaydλR,1232(θ31)2A12,12,0,03=λR=1/21/22δ12λRR0,0BW(σ3)C0,0,12,λR12,λRC12,λR,0,012,λRHΛ(1405),0,12LS,productionHΛ(1405),12,0decaydλR,1212(θ12)2+λR=1/21/22δ12λRR1,0BW(σ3)C0,0,12,λR12,λRC12,λR,0,012,λRHΛ(1600),0,12LS,productionHΛ(1600),12,0decaydλR,1212(θ12)2+λR=1/21/22δ12λRR0,0BW(σ3)C0,0,12,λR12,λRC12,λR,0,012,λRHΛ(1670),0,12LS,productionHΛ(1670),12,0decaydλR,1212(θ12)2+λR=1/21/22δ12λRR0,0BW(σ3)C0,0,12,λR12,λRC12,λR,0,012,λRHΛ(2000),0,12LS,productionHΛ(2000),12,0decaydλR,1212(θ12)2+λR=3/23/26δ12λRR2,1BW(σ3)C1,0,32,λR12,λRC32,λR,0,032,λRHΛ(1520),1,32LS,productionHΛ(1520),12,0decaydλR,1232(θ12)2+λR=3/23/26δ12λRR2,1BW(σ3)C1,0,32,λR12,λRC32,λR,0,032,λRHΛ(1690),1,32LS,productionHΛ(1690),12,0decaydλR,1232(θ12)2A12,12,0,01=λR=112δ12,λR12R1,0BW(σ1)C0,0,12,λR1212,λR12C1,λR,12,1212,λR12HK(892)0,0,12LS,productionHK(892)0,0,0decaydλR,01(θ23)2+λR=02δ12,λR12R0,0BW(σ1)C0,0,12,λR1212,λR12C0,λR,12,1212,λR12HK0(1430)0,0,12LS,productionHK0(1430)0,0,0decaydλR,00(θ23)2+λR=02δ12,λR12R0,0BW(σ1)C0,0,12,λR1212,λR12C0,λR,12,1212,λR12HK0(700)0,0,12LS,productionHK0(700)0,0,0decaydλR,00(θ23)2+λR=226δ12,λR12R2,1BW(σ1)C1,0,32,λR1212,λR12C2,λR,12,1232,λR12HK2(1980)0,1,32LS,productionHK2(1980)0,0,0decaydλR,02(θ23)2A12,12,0,02=λR=3/23/26δ12λRR1,1BW(σ2)C1,0,32,λR12,λRC32,λR,0,032,λRHΔ(1232)++,1,32LS,productionHΔ(1232)++,0,12decaydλR,1232(θ31)2+λR=3/23/26δ12λRR1,1BW(σ2)C1,0,32,λR12,λRC32,λR,0,032,λRHΔ(1600)++,1,32LS,productionHΔ(1600)++,0,12decaydλR,1232(θ31)2+λR=3/23/26δ12λRR2,1BW(σ2)C1,0,32,λR12,λRC32,λR,0,032,λRHΔ(1700)++,1,32LS,productionHΔ(1700)++,0,12decaydλR,1232(θ31)2A12,12,0,03=λR=1/21/22δ12λRR0,0BW(σ3)C0,0,12,λR12,λRC12,λR,0,012,λRHΛ(1405),0,12LS,productionHΛ(1405),12,0decaydλR,1212(θ12)2+λR=1/21/22δ12λRR1,0BW(σ3)C0,0,12,λR12,λRC12,λR,0,012,λRHΛ(1600),0,12LS,productionHΛ(1600),12,0decaydλR,1212(θ12)2+λR=1/21/22δ12λRR0,0BW(σ3)C0,0,12,λR12,λRC12,λR,0,012,λRHΛ(1670),0,12LS,productionHΛ(1670),12,0decaydλR,1212(θ12)2+λR=1/21/22δ12λRR0,0BW(σ3)C0,0,12,λR12,λRC12,λR,0,012,λRHΛ(2000),0,12LS,productionHΛ(2000),12,0decaydλR,1212(θ12)2+λR=3/23/26δ12λRR2,1BW(σ3)C1,0,32,λR12,λRC32,λR,0,032,λRHΛ(1520),1,32LS,productionHΛ(1520),12,0decaydλR,1232(θ12)2+λR=3/23/26δ12λRR2,1BW(σ3)C1,0,32,λR12,λRC32,λR,0,032,λRHΛ(1690),1,32LS,productionHΛ(1690),12,0decaydλR,1232(θ12)2A12,12,0,01=λR=112δ12,λR+12R1,0BW(σ1)C0,0,12,λR+1212,λR+12C1,λR,12,1212,λR+12HK(892)0,0,12LS,productionHK(892)0,0,0decaydλR,01(θ23)2+λR=02δ12,λR+12R0,0BW(σ1)C0,0,12,λR+1212,λR+12C0,λR,12,1212,λR+12HK0(1430)0,0,12LS,productionHK0(1430)0,0,0decaydλR,00(θ23)2+λR=02δ12,λR+12R0,0BW(σ1)C0,0,12,λR+1212,λR+12C0,λR,12,1212,λR+12HK0(700)0,0,12LS,productionHK0(700)0,0,0decaydλR,00(θ23)2+λR=226δ12,λR+12R2,1BW(σ1)C1,0,32,λR+1212,λR+12C2,λR,12,1232,λR+12HK2(1980)0,1,32LS,productionHK2(1980)0,0,0decaydλR,02(θ23)2A12,12,0,02=λR=3/23/26δ12λRR1,1BW(σ2)C1,0,32,λR12,λRC32,λR,0,032,λRHΔ(1232)++,1,32LS,productionHΔ(1232)++,0,12decaydλR,1232(θ31)2+λR=3/23/26δ12λRR1,1BW(σ2)C1,0,32,λR12,λRC32,λR,0,032,λRHΔ(1600)++,1,32LS,productionHΔ(1600)++,0,12decaydλR,1232(θ31)2+λR=3/23/26δ12λRR2,1BW(σ2)C1,0,32,λR12,λRC32,λR,0,032,λRHΔ(1700)++,1,32LS,productionHΔ(1700)++,0,12decaydλR,1232(θ31)2A12,12,0,03=λR=1/21/22δ12λRR0,0BW(σ3)C0,0,12,λR12,λRC12,λR,0,012,λRHΛ(1405),0,12LS,productionHΛ(1405),12,0decaydλR,1212(θ12)2+λR=1/21/22δ12λRR1,0BW(σ3)C0,0,12,λR12,λRC12,λR,0,012,λRHΛ(1600),0,12LS,productionHΛ(1600),12,0decaydλR,1212(θ12)2+λR=1/21/22δ12λRR0,0BW(σ3)C0,0,12,λR12,λRC12,λR,0,012,λRHΛ(1670),0,12LS,productionHΛ(1670),12,0decaydλR,1212(θ12)2+λR=1/21/22δ12λRR0,0BW(σ3)C0,0,12,λR12,λRC12,λR,0,012,λRHΛ(2000),0,12LS,productionHΛ(2000),12,0decaydλR,1212(θ12)2+λR=3/23/26δ12λRR2,1BW(σ3)C1,0,32,λR12,λRC32,λR,0,032,λRHΛ(1520),1,32LS,productionHΛ(1520),12,0decaydλR,1232(θ12)2+λR=3/23/26δ12λRR2,1BW(σ3)C1,0,32,λR12,λRC32,λR,0,032,λRHΛ(1690),1,32LS,productionHΛ(1690),12,0decaydλR,1232(θ12)2A12,12,0,01=λR=112δ12,λR12R1,0BW(σ1)C0,0,12,λR1212,λR12C1,λR,12,1212,λR12HK(892)0,0,12LS,productionHK(892)0,0,0decaydλR,01(θ23)2+λR=02δ12,λR12R0,0BW(σ1)C0,0,12,λR1212,λR12C0,λR,12,1212,λR12HK0(1430)0,0,12LS,productionHK0(1430)0,0,0decaydλR,00(θ23)2+λR=02δ12,λR12R0,0BW(σ1)C0,0,12,λR1212,λR12C0,λR,12,1212,λR12HK0(700)0,0,12LS,productionHK0(700)0,0,0decaydλR,00(θ23)2+λR=226δ12,λR12R2,1BW(σ1)C1,0,32,λR1212,λR12C2,λR,12,1232,λR12HK2(1980)0,1,32LS,productionHK2(1980)0,0,0decaydλR,02(θ23)2A12,12,0,02=λR=3/23/26δ12λRR1,1BW(σ2)C1,0,32,λR12,λRC32,λR,0,032,λRHΔ(1232)++,1,32LS,productionHΔ(1232)++,0,12decaydλR,1232(θ31)2+λR=3/23/26δ12λRR1,1BW(σ2)C1,0,32,λR12,λRC32,λR,0,032,λRHΔ(1600)++,1,32LS,productionHΔ(1600)++,0,12decaydλR,1232(θ31)2+λR=3/23/26δ12λRR2,1BW(σ2)C1,0,32,λR12,λRC32,λR,0,032,λRHΔ(1700)++,1,32LS,productionHΔ(1700)++,0,12decaydλR,1232(θ31)2A12,12,0,03=λR=1/21/22δ12λRR0,0BW(σ3)C0,0,12,λR12,λRC12,λR,0,012,λRHΛ(1405),0,12LS,productionHΛ(1405),12,0decaydλR,1212(θ12)2+λR=1/21/22δ12λRR1,0BW(σ3)C0,0,12,λR12,λRC12,λR,0,012,λRHΛ(1600),0,12LS,productionHΛ(1600),12,0decaydλR,1212(θ12)2+λR=1/21/22δ12λRR0,0BW(σ3)C0,0,12,λR12,λRC12,λR,0,012,λRHΛ(1670),0,12LS,productionHΛ(1670),12,0decaydλR,1212(θ12)2+λR=1/21/22δ12λRR0,0BW(σ3)C0,0,12,λR12,λRC12,λR,0,012,λRHΛ(2000),0,12LS,productionHΛ(2000),12,0decaydλR,1212(θ12)2+λR=3/23/26δ12λRR2,1BW(σ3)C1,0,32,λR12,λRC32,λR,0,032,λRHΛ(1520),1,32LS,productionHΛ(1520),12,0decaydλR,1232(θ12)2+λR=3/23/26δ12λRR2,1BW(σ3)C1,0,32,λR12,λRC32,λR,0,032,λRHΛ(1690),1,32LS,productionHΛ(1690),12,0decaydλR,1232(θ12)2

By default, the aligned amplitudes are built up of Wigner-d functions, Clebsch–Gordan coefficients (C), a resonance parametrization (R(σ)), and two coupling symbols Missing open brace for subscript. In some cases, you want to combine the couplings into one scaling factor. That can be done with the use_coefficients flag:

model = model_builder.formulate(reference_subsystem=1, use_coefficients=True)
(symbol, expr), *_ = model.amplitudes.items()
Latex(aslatex({symbol: expr}).replace(R"\sum_", R"\sum\limits_"))
A12,12,0,01=λR=112δ12,λR+12R1,0BW(σ1)C0,0,12,λR+1212,λR+12C1,λR,12,1212,λR+12H0,12,0,0λ,LS,K(892)0dλR,01(θ23)2+λR=02δ12,λR+12R0,0BW(σ1)C0,0,12,λR+1212,λR+12C0,λR,12,1212,λR+12H0,12,0,0λ,LS,K0(1430)0dλR,00(θ23)2+λR=02δ12,λR+12R0,0BW(σ1)C0,0,12,λR+1212,λR+12C0,λR,12,1212,λR+12H0,12,0,0λ,LS,K0(700)0dλR,00(θ23)2+λR=226δ12,λR+12R2,1BW(σ1)C1,0,32,λR+1212,λR+12C2,λR,12,1232,λR+12H1,32,0,0λ,LS,K2(1980)0dλR,02(θ23)2