2. Cross-check with LHCb data#

Hide code cell content
from __future__ import annotations

import json
import logging
import os
from functools import cache
from textwrap import dedent

import numpy as np
import sympy as sp
from ampform.sympy import perform_cached_doit
from ampform_dpd import AmplitudeModel
from ampform_dpd.io import aslatex, perform_cached_lambdify, simplify_latex_rendering
from IPython.display import Markdown, Math
from tqdm.auto import tqdm

from polarimetry.data import create_data_transformer
from polarimetry.io import display_latex, mute_jax_warnings
from polarimetry.lhcb import (
    get_conversion_factor,
    get_conversion_factor_ls,
    load_model,
    load_model_builder,
    parameter_key_to_symbol,
)
from polarimetry.lhcb.particle import load_particles


@cache
def load_model_cached(model_id: int | str) -> AmplitudeModel:
    return load_model(MODEL_FILE, PARTICLES, model_id)


mute_jax_warnings()
simplify_latex_rendering()
NO_LOG = "EXECUTE_NB" in os.environ
if NO_LOG:
    logging.disable(logging.CRITICAL)

MODEL_FILE = "../data/model-definitions.yaml"
PARTICLES = load_particles("../data/particle-definitions.yaml")
DEFAULT_MODEL = load_model_cached(model_id=0)
with open("../data/crosscheck.json") as stream:
    crosscheck_data = json.load(stream)

2.1. Lineshape comparison#

We compute a few lineshapes for the following point in phase space and compare it with the values from [1]:

Hide code cell source
σ1, σ2, σ3 = sp.symbols("sigma1:4", nonnegative=True)
lineshape_vars = crosscheck_data["mainvars"]
lineshape_subs = {
    σ1: lineshape_vars["m2kpi"],
    σ2: lineshape_vars["m2pk"],
    **DEFAULT_MODEL.parameter_defaults,
}
lineshape_vars
{'costhetap': -0.9949949110827053,
 'm2kpi': 0.7980703453578917,
 'm2pk': 3.6486261122281745,
 'phikpi': -0.4,
 'phip': -0.3}

The lineshapes are computed for the following decay chains:

Hide code cell source
K892_chain = DEFAULT_MODEL.decay.find_chain("K(892)")
L1405_chain = DEFAULT_MODEL.decay.find_chain("L(1405)")
L1690_chain = DEFAULT_MODEL.decay.find_chain("L(1690)")
Math(aslatex([K892_chain, L1405_chain, L1690_chain]))
\[\begin{split}\displaystyle \begin{array}{c} \Lambda_c^+ \xrightarrow[S=1/2]{L=0} \left(K(892) \xrightarrow[S=0]{L=1} \pi^+ K^-\right) p \\ \Lambda_c^+ \xrightarrow[S=1/2]{L=0} \left(\Lambda(1405) \xrightarrow[S=1/2]{L=0} K^- p\right) \pi^+ \\ \Lambda_c^+ \xrightarrow[S=3/2]{L=1} \left(\Lambda(1690) \xrightarrow[S=1/2]{L=2} K^- p\right) \pi^+ \\ \end{array}\end{split}\]
Hide code cell source
crosscheck_data["lineshapes"]
{'BW_K(892)_p^1_q^0': '(2.1687201455088894+23.58225917009096j)',
 'BW_L(1405)_p^0_q^0': '(-0.5636481410171861+0.13763637759224928j)',
 'BW_L(1690)_p^2_q^1': '(-1.5078327158518026+0.9775036395061584j)'}
Hide code cell source
def build_dynamics(c):
    return builder.dynamics_choices.get_builder(c)(c)[0].doit()


builder = load_model_builder(MODEL_FILE, PARTICLES, model_id=0)
K892_bw_val = build_dynamics(K892_chain).xreplace(lineshape_subs).n()
L1405_bw_val = build_dynamics(L1405_chain).xreplace(lineshape_subs).n()
L1690_bw_val = build_dynamics(L1690_chain).xreplace(lineshape_subs).n()
display_latex([K892_bw_val, L1405_bw_val, L1690_bw_val])
\[\begin{split}\displaystyle \begin{array}{c} 2.16872014550901 + 23.5822591700909 i \\ -0.563648141017186 + 0.137636377592249 i \\ -1.5078327158518 + 0.977503639506157 i \\ \end{array}\end{split}\]
Hide code cell source
lineshape_decimals = 13
np.testing.assert_array_almost_equal(
    np.array(list(map(complex, crosscheck_data["lineshapes"].values()))),
    np.array(list(map(complex, [K892_bw_val, L1405_bw_val, L1690_bw_val]))),
    decimal=lineshape_decimals,
)
src = f"""
:::{{tip}}
These values are **equal up to {lineshape_decimals} decimals**.
:::
"""
Markdown(src)

Tip

These values are equal up to 13 decimals.

2.2. Amplitude comparison#

The amplitude for each decay chain and each outer state helicity combination are evaluated on the following point in phase space:

Hide code cell source
amplitude_vars = dict(crosscheck_data["chainvars"])
transformer = create_data_transformer(DEFAULT_MODEL)
input_data = {
    str(σ1): amplitude_vars["m2kpi"],
    str(σ2): amplitude_vars["m2pk"],
    str(σ3): amplitude_vars["m2ppi"],
}
input_data = {k: float(v) for k, v in transformer(input_data).items()}
display_latex({sp.Symbol(k): v for k, v in input_data.items()})
\[\begin{split}\displaystyle \begin{array}{rcl} \theta_{23} &=& 1.821341166520149 \\ \theta_{31} &=& 1.8038351483715633 \\ \theta_{12} &=& 1.1139045236042229 \\ \zeta^0_{1(1)} &=& 0.0 \\ \zeta^1_{1(1)} &=& 0.0 \\ \zeta^0_{2(1)} &=& -2.0777687076712614 \\ \zeta^1_{2(1)} &=& 0.22583331080386268 \\ \zeta^0_{3(1)} &=& 2.6540796539955838 \\ \zeta^1_{3(1)} &=& -0.5594175047790548 \\ \sigma_{1} &=& 0.7980703453578917 \\ \sigma_{2} &=& 3.6486261122281745 \\ \sigma_{3} &=& 1.9247541217931925 \\ \end{array}\end{split}\]
Hide code cell source
@cache
def create_amplitude_functions(
    model_id: int | str,
) -> dict[tuple[sp.Rational, sp.Rational], sp.Expr]:
    model = load_model(MODEL_FILE, PARTICLES, model_id)
    production_couplings = get_production_couplings(model_id)
    fixed_parameters = {
        s: v
        for s, v in model.parameter_defaults.items()
        if s not in production_couplings
    }
    exprs = formulate_amplitude_expressions(model_id)
    return {
        k: perform_cached_lambdify(
            expr.xreplace(fixed_parameters),
            parameters=production_couplings,
            backend="numpy",
        )
        for k, expr in tqdm(exprs.items(), desc="Performing doit", disable=NO_LOG)
    }


@cache
def formulate_amplitude_expressions(
    model_id: int | str,
) -> dict[tuple[sp.Rational, sp.Rational], sp.Expr]:
    builder = load_model_builder(MODEL_FILE, PARTICLES, model_id)
    half = sp.Rational(1, 2)
    exprs = {
        (λ_Λc, λ_p): builder.formulate_aligned_amplitude(λ_Λc, λ_p, 0, 0)[0]
        for λ_Λc in [-half, +half]
        for λ_p in [-half, +half]
    }
    model = load_model(MODEL_FILE, PARTICLES, model_id)
    return {
        k: perform_cached_doit(expr.doit().xreplace(model.amplitudes))
        for k, expr in tqdm(exprs.items(), desc="Lambdifying", disable=NO_LOG)
    }


@cache
def get_production_couplings(model_id: int | str) -> dict[sp.Indexed, complex]:
    model = load_model(MODEL_FILE, PARTICLES, model_id)
    return {
        symbol: value
        for symbol, value in model.parameter_defaults.items()
        if isinstance(symbol, sp.Indexed)
        if "production" in str(symbol)
    }
Hide code cell source
def plusminus_to_helicity(plusminus: str) -> sp.Rational:
    half = sp.Rational(1, 2)
    if plusminus == "+":
        return +half
    if plusminus == "-":
        return -half
    raise NotImplementedError(plusminus)


def create_comparison_table(
    model_id: int | str, decimals: int | None = None
) -> Markdown:
    min_ls = not is_ls_model(model_id)
    amplitude_funcs = create_amplitude_functions(model_id)
    real_amp_crosscheck = {
        k: v
        for k, v in get_amplitude_crosscheck_data(model_id).items()
        if k.startswith("Ar")
    }
    production_couplings = get_production_couplings(model_id)
    couplings_to_zero = {str(symbol): 0 for symbol in production_couplings}

    src = ""
    if decimals is not None:
        src += dedent(
            f"""
            :::{{tip}}
            Computed amplitudes are equal to LHCb amplitudes up to **{decimals} decimals**.
            :::
            """
        )
    src += dedent(
        """
        |     | Computed | Expected | Difference |
        | ---:| --------:| --------:| ----------:|
        """
    )
    for amp_identifier, entry in real_amp_crosscheck.items():
        coupling = parameter_key_to_symbol(
            amp_identifier.replace("Ar", "A"),
            particle_definitions=PARTICLES,
            min_ls=min_ls,
        )
        src += f"| **`{amp_identifier}`** | ${sp.latex(coupling)}$ |\n"
        for matrix_key, expected in entry.items():
            matrix_suffix = matrix_key[1:]  # ++, +-, -+, --
            λ_Λc, λ_p = map(plusminus_to_helicity, matrix_suffix)
            func = amplitude_funcs[λ_Λc, -λ_p]
            func.update_parameters(couplings_to_zero)
            func.update_parameters({str(coupling): 1})
            computed = complex(func(input_data))
            computed *= determine_conversion_factor(coupling, λ_p, min_ls)
            expected = complex(expected)
            if abs(expected) != 0.0:
                diff = abs(computed - expected) / abs(expected)
                if diff < 1e-6:
                    diff = f"{diff:.2e}"
                else:
                    diff = f'<span style="color:red;">{diff:.2e}</span>'
            else:
                diff = ""
            src += f"| `{matrix_key}` | {computed:>.6f} | {expected:>.6f} | {diff} |\n"
            if decimals is not None:
                np.testing.assert_array_almost_equal(
                    computed,
                    expected,
                    decimal=decimals,
                    err_msg=f"  {amp_identifier} {matrix_key}",
                )
    return Markdown(src)


def determine_conversion_factor(
    coupling: sp.Indexed, λ_p: sp.Rational, min_ls: bool
) -> int:
    resonance_latex = str(coupling.indices[0])
    resonance, *_ = (p for p in PARTICLES.values() if p.latex == resonance_latex)
    if min_ls:
        factor = get_conversion_factor(resonance)
    else:
        _, L, S = coupling.indices
        factor = get_conversion_factor_ls(resonance, L, S)
    half = sp.Rational(1, 2)
    factor *= int((-1) ** (half + λ_p))  # # additional sign flip for amplitude
    return factor


def is_ls_model(model_id: int | str) -> bool:
    if isinstance(model_id, int):
        return model_id == 17
    return "LS couplings" in model_id


def get_amplitude_crosscheck_data(model_id: int | str) -> dict[str, complex]:
    if is_ls_model(model_id):
        return crosscheck_data["chains_LS"]
    return crosscheck_data["chains"]

2.2.1. Default model#

Hide code cell source
create_comparison_table(model_id=0, decimals=13)
Hide code cell output

Tip

Computed amplitudes are equal to LHCb amplitudes up to 13 decimals.

Computed

Expected

Difference

ArD(1232)1

\(\mathcal{H}^\mathrm{production}_{\Delta(1232), - \frac{1}{2}, 0}\)

A++

-0.488498+0.517710j

-0.488498+0.517710j

3.11e-14

A+-

0.894898-0.948412j

0.894898-0.948412j

7.61e-15

A-+

0.121490-0.128755j

0.121490-0.128755j

1.80e-14

A--

-0.222563+0.235872j

-0.222563+0.235872j

6.14e-15

ArD(1232)2

\(\mathcal{H}^\mathrm{production}_{\Delta(1232), \frac{1}{2}, 0}\)

A++

-0.222563+0.235872j

-0.222563+0.235872j

6.14e-15

A+-

-0.121490+0.128755j

-0.121490+0.128755j

1.80e-14

A-+

-0.894898+0.948412j

-0.894898+0.948412j

7.61e-15

A--

-0.488498+0.517710j

-0.488498+0.517710j

3.11e-14

ArD(1600)1

\(\mathcal{H}^\mathrm{production}_{\Delta(1600), - \frac{1}{2}, 0}\)

A++

0.289160+0.081910j

0.289160+0.081910j

3.11e-14

A+-

-0.529724-0.150054j

-0.529724-0.150054j

7.48e-15

A-+

-0.071915-0.020371j

-0.071915-0.020371j

1.82e-14

A--

0.131743+0.037319j

0.131743+0.037319j

5.71e-15

ArD(1600)2

\(\mathcal{H}^\mathrm{production}_{\Delta(1600), \frac{1}{2}, 0}\)

A++

0.131743+0.037319j

0.131743+0.037319j

5.71e-15

A+-

0.071915+0.020371j

0.071915+0.020371j

1.82e-14

A-+

0.529724+0.150054j

0.529724+0.150054j

7.48e-15

A--

0.289160+0.081910j

0.289160+0.081910j

3.11e-14

ArD(1700)1

\(\mathcal{H}^\mathrm{production}_{\Delta(1700), - \frac{1}{2}, 0}\)

A++

-0.018885-0.001757j

-0.018885-0.001757j

3.18e-13

A+-

0.315695+0.029366j

0.315695+0.029366j

2.04e-14

A-+

0.004697+0.000437j

0.004697+0.000437j

3.30e-13

A--

-0.078514-0.007303j

-0.078514-0.007303j

7.22e-15

ArD(1700)2

\(\mathcal{H}^\mathrm{production}_{\Delta(1700), \frac{1}{2}, 0}\)

A++

0.078514+0.007303j

0.078514+0.007303j

7.22e-15

A+-

0.004697+0.000437j

0.004697+0.000437j

3.30e-13

A-+

0.315695+0.029366j

0.315695+0.029366j

2.04e-14

A--

0.018885+0.001757j

0.018885+0.001757j

3.18e-13

ArK(892)1

\(\mathcal{H}^\mathrm{production}_{K(892), 0, - \frac{1}{2}}\)

A++

-0.537695-5.846793j

-0.537695-5.846793j

5.00e-15

A+-

0.000000+0.000000j

0.000000+0.000000j

A-+

-0.000000+0.000000j

0.000000+0.000000j

A--

0.000000+0.000000j

0.000000+0.000000j

ArK(892)2

\(\mathcal{H}^\mathrm{production}_{K(892), -1, - \frac{1}{2}}\)

A++

-0.000000+0.000000j

0.000000+0.000000j

A+-

0.000000+0.000000j

0.000000+0.000000j

A-+

1.485636+16.154534j

1.485636+16.154534j

3.20e-15

A--

0.000000+0.000000j

0.000000+0.000000j

ArK(892)3

\(\mathcal{H}^\mathrm{production}_{K(892), 1, \frac{1}{2}}\)

A++

-0.000000+0.000000j

0.000000+0.000000j

A+-

-1.485636-16.154534j

-1.485636-16.154534j

3.20e-15

A-+

-0.000000+0.000000j

0.000000+0.000000j

A--

0.000000+0.000000j

0.000000+0.000000j

ArK(892)4

\(\mathcal{H}^\mathrm{production}_{K(892), 0, \frac{1}{2}}\)

A++

-0.000000+0.000000j

0.000000+0.000000j

A+-

0.000000+0.000000j

0.000000+0.000000j

A-+

-0.000000+0.000000j

0.000000+0.000000j

A--

-0.537695-5.846793j

-0.537695-5.846793j

5.00e-15

ArK(1430)1

\(\mathcal{H}^\mathrm{production}_{K(1430), 0, \frac{1}{2}}\)

A++

-0.000000+0.000000j

0.000000+0.000000j

A+-

0.000000+0.000000j

0.000000+0.000000j

A-+

-0.000000+0.000000j

0.000000+0.000000j

A--

0.909456+0.072819j

0.909456+0.072819j

1.22e-16

ArK(1430)2

\(\mathcal{H}^\mathrm{production}_{K(1430), 0, - \frac{1}{2}}\)

A++

0.909456+0.072819j

0.909456+0.072819j

1.22e-16

A+-

0.000000+0.000000j

0.000000+0.000000j

A-+

-0.000000+0.000000j

0.000000+0.000000j

A--

0.000000+0.000000j

0.000000+0.000000j

ArK(700)1

\(\mathcal{H}^\mathrm{production}_{K(700), 0, \frac{1}{2}}\)

A++

-0.000000+0.000000j

0.000000+0.000000j

A+-

0.000000+0.000000j

0.000000+0.000000j

A-+

-0.000000+0.000000j

0.000000+0.000000j

A--

-1.708879+3.380634j

-1.708879+3.380634j

4.97e-16

ArK(700)2

\(\mathcal{H}^\mathrm{production}_{K(700), 0, - \frac{1}{2}}\)

A++

-1.708879+3.380634j

-1.708879+3.380634j

4.97e-16

A+-

0.000000+0.000000j

0.000000+0.000000j

A-+

-0.000000+0.000000j

0.000000+0.000000j

A--

0.000000+0.000000j

0.000000+0.000000j

ArL(1405)1

\(\mathcal{H}^\mathrm{production}_{\Lambda(1405), - \frac{1}{2}, 0}\)

A++

-0.412613+0.100755j

-0.412613+0.100755j

1.49e-15

A+-

-0.256372+0.062603j

-0.256372+0.062603j

3.06e-15

A-+

-0.242818+0.059293j

-0.242818+0.059293j

1.40e-15

A--

-0.150872+0.036841j

-0.150872+0.036841j

3.06e-15

ArL(1405)2

\(\mathcal{H}^\mathrm{production}_{\Lambda(1405), \frac{1}{2}, 0}\)

A++

-0.150872+0.036841j

-0.150872+0.036841j

3.06e-15

A+-

0.242818-0.059293j

0.242818-0.059293j

1.40e-15

A-+

0.256372-0.062603j

0.256372-0.062603j

3.06e-15

A--

-0.412613+0.100755j

-0.412613+0.100755j

1.49e-15

ArL(1520)1

\(\mathcal{H}^\mathrm{production}_{\Lambda(1520), - \frac{1}{2}, 0}\)

A++

0.257632-0.288056j

0.257632-0.288056j

1.52e-14

A+-

0.731594-0.817988j

0.731594-0.817988j

2.23e-14

A-+

0.151613-0.169517j

0.151613-0.169517j

1.51e-14

A--

0.430534-0.481376j

0.430534-0.481376j

2.22e-14

ArL(1520)2

\(\mathcal{H}^\mathrm{production}_{\Lambda(1520), \frac{1}{2}, 0}\)

A++

-0.430534+0.481376j

-0.430534+0.481376j

2.22e-14

A+-

0.151613-0.169517j

0.151613-0.169517j

1.51e-14

A-+

0.731594-0.817988j

0.731594-0.817988j

2.25e-14

A--

-0.257632+0.288056j

-0.257632+0.288056j

1.52e-14

ArL(1600)1

\(\mathcal{H}^\mathrm{production}_{\Lambda(1600), - \frac{1}{2}, 0}\)

A++

-0.385436+0.424707j

-0.385436+0.424707j

1.17e-15

A+-

0.382669-0.421658j

0.382669-0.421658j

3.88e-15

A-+

-0.226825+0.249935j

-0.226825+0.249935j

1.38e-15

A--

0.225196-0.248141j

0.225196-0.248141j

3.64e-15

ArL(1600)2

\(\mathcal{H}^\mathrm{production}_{\Lambda(1600), \frac{1}{2}, 0}\)

A++

-0.225196+0.248141j

-0.225196+0.248141j

3.68e-15

A+-

-0.226825+0.249935j

-0.226825+0.249935j

1.46e-15

A-+

0.382669-0.421658j

0.382669-0.421658j

3.88e-15

A--

0.385436-0.424707j

0.385436-0.424707j

1.17e-15

ArL(1670)1

\(\mathcal{H}^\mathrm{production}_{\Lambda(1670), - \frac{1}{2}, 0}\)

A++

-0.846639+0.064025j

-0.846639+0.064025j

1.18e-15

A+-

-0.526049+0.039781j

-0.526049+0.039781j

2.96e-15

A-+

-0.498237+0.037678j

-0.498237+0.037678j

1.22e-15

A--

-0.309574+0.023411j

-0.309574+0.023411j

3.24e-15

ArL(1670)2

\(\mathcal{H}^\mathrm{production}_{\Lambda(1670), \frac{1}{2}, 0}\)

A++

-0.309574+0.023411j

-0.309574+0.023411j

3.24e-15

A+-

0.498237-0.037678j

0.498237-0.037678j

1.22e-15

A-+

0.526049-0.039781j

0.526049-0.039781j

2.96e-15

A--

-0.846639+0.064025j

-0.846639+0.064025j

1.18e-15

ArL(1690)1

\(\mathcal{H}^\mathrm{production}_{\Lambda(1690), - \frac{1}{2}, 0}\)

A++

0.232446-0.150691j

0.232446-0.150691j

1.63e-14

A+-

0.660073-0.427915j

0.660073-0.427915j

2.30e-14

A-+

0.136791-0.088680j

0.136791-0.088680j

1.62e-14

A--

0.388445-0.251823j

0.388445-0.251823j

2.29e-14

ArL(1690)2

\(\mathcal{H}^\mathrm{production}_{\Lambda(1690), \frac{1}{2}, 0}\)

A++

-0.388445+0.251823j

-0.388445+0.251823j

2.31e-14

A+-

0.136791-0.088680j

0.136791-0.088680j

1.62e-14

A-+

0.660073-0.427915j

0.660073-0.427915j

2.32e-14

A--

-0.232446+0.150691j

-0.232446+0.150691j

1.63e-14

ArL(2000)1

\(\mathcal{H}^\mathrm{production}_{\Lambda(2000), - \frac{1}{2}, 0}\)

A++

1.072514+1.195841j

1.072514+1.195841j

1.47e-15

A+-

0.666394+0.743022j

0.666394+0.743022j

2.69e-15

A-+

0.631162+0.703738j

0.631162+0.703738j

1.34e-15

A--

0.392165+0.437260j

0.392165+0.437260j

3.03e-15

ArL(2000)2

\(\mathcal{H}^\mathrm{production}_{\Lambda(2000), \frac{1}{2}, 0}\)

A++

0.392165+0.437260j

0.392165+0.437260j

3.03e-15

A+-

-0.631162-0.703738j

-0.631162-0.703738j

1.34e-15

A-+

-0.666394-0.743022j

-0.666394-0.743022j

2.69e-15

A--

1.072514+1.195841j

1.072514+1.195841j

1.47e-15

2.2.2. LS-model#

Hide code cell source
create_comparison_table(
    "Alternative amplitude model obtained using LS couplings",
    decimals=13,
)
Hide code cell output

Tip

Computed amplitudes are equal to LHCb amplitudes up to 13 decimals.

Computed

Expected

Difference

ArD(1232)1

\(\mathcal{H}^\mathrm{LS,production}_{\Delta(1232), 1, \frac{3}{2}}\)

A++

0.502796-0.532862j

0.502796-0.532862j

1.94e-14

A+-

-0.546882+0.579585j

-0.546882+0.579585j

5.67e-15

A-+

0.546882-0.579585j

0.546882-0.579585j

5.67e-15

A--

0.502796-0.532862j

0.502796-0.532862j

1.93e-14

ArD(1232)2

\(\mathcal{H}^\mathrm{LS,production}_{\Delta(1232), 2, \frac{3}{2}}\)

A++

-0.180489+0.191282j

-0.180489+0.191282j

5.53e-14

A+-

0.689818-0.731068j

0.689818-0.731068j

2.67e-15

A-+

0.689818-0.731068j

0.689818-0.731068j

2.56e-15

A--

0.180489-0.191282j

0.180489-0.191282j

5.51e-14

ArD(1600)1

\(\mathcal{H}^\mathrm{LS,production}_{\Delta(1600), 1, \frac{3}{2}}\)

A++

-0.297624-0.084307j

-0.297624-0.084307j

1.83e-14

A+-

0.323720+0.091699j

0.323720+0.091699j

4.47e-15

A-+

-0.323720-0.091699j

-0.323720-0.091699j

4.47e-15

A--

-0.297624-0.084307j

-0.297624-0.084307j

1.83e-14

ArD(1600)2

\(\mathcal{H}^\mathrm{LS,production}_{\Delta(1600), 2, \frac{3}{2}}\)

A++

0.143541+0.040660j

0.143541+0.040660j

5.53e-14

A+-

-0.548604-0.155402j

-0.548604-0.155402j

2.35e-15

A-+

-0.548604-0.155402j

-0.548604-0.155402j

2.20e-15

A--

-0.143541-0.040660j

-0.143541-0.040660j

5.47e-14

ArD(1700)1

\(\mathcal{H}^\mathrm{LS,production}_{\Delta(1700), 1, \frac{3}{2}}\)

A++

-0.042164-0.003922j

-0.042164-0.003922j

1.10e-13

A+-

-0.226551-0.021074j

-0.226551-0.021074j

1.47e-14

A-+

-0.226551-0.021074j

-0.226551-0.021074j

1.47e-14

A--

0.042164+0.003922j

0.042164+0.003922j

1.11e-13

ArD(1700)2

\(\mathcal{H}^\mathrm{LS,production}_{\Delta(1700), 2, \frac{3}{2}}\)

A++

-0.105349-0.009800j

-0.105349-0.009800j

5.81e-14

A+-

0.336381+0.031290j

0.336381+0.031290j

2.34e-14

A-+

-0.336381-0.031290j

-0.336381-0.031290j

2.34e-14

A--

-0.105349-0.009800j

-0.105349-0.009800j

5.81e-14

ArK(892)1

\(\mathcal{H}^\mathrm{LS,production}_{K(892), 0, \frac{1}{2}}\)

A++

0.219513+2.386943j

0.219513+2.386943j

5.19e-15

A+-

-0.857733-9.326825j

-0.857733-9.326825j

3.53e-15

A-+

-0.857733-9.326825j

-0.857733-9.326825j

3.53e-15

A--

-0.219513-2.386943j

-0.219513-2.386943j

5.19e-15

ArK(892)2

\(\mathcal{H}^\mathrm{LS,production}_{K(892), 1, \frac{1}{2}}\)

A++

0.219549+2.387337j

0.219549+2.387337j

7.53e-15

A+-

-0.857874-9.328364j

-0.857874-9.328364j

2.80e-15

A-+

0.857874+9.328364j

0.857874+9.328364j

2.80e-15

A--

0.219549+2.387337j

0.219549+2.387337j

7.53e-15

ArK(892)3

\(\mathcal{H}^\mathrm{LS,production}_{K(892), 1, \frac{3}{2}}\)

A++

0.310489+3.376204j

0.310489+3.376204j

4.72e-15

A+-

0.606609+6.596150j

0.606609+6.596150j

2.80e-15

A-+

-0.606609-6.596150j

-0.606609-6.596150j

2.80e-15

A--

0.310489+3.376204j

0.310489+3.376204j

4.72e-15

ArK(892)4

\(\mathcal{H}^\mathrm{LS,production}_{K(892), 2, \frac{3}{2}}\)

A++

0.310629+3.377724j

0.310629+3.377724j

1.42e-14

A+-

0.606882+6.599119j

0.606882+6.599119j

7.92e-15

A-+

0.606882+6.599119j

0.606882+6.599119j

7.92e-15

A--

-0.310629-3.377724j

-0.310629-3.377724j

1.42e-14

ArK(1430)1

\(\mathcal{H}^\mathrm{LS,production}_{K(1430), 0, \frac{1}{2}}\)

A++

0.643091+0.051436j

0.643091+0.051436j

1.08e-16

A+-

0.000000+0.000000j

0.000000+0.000000j

A-+

-0.000000+0.000000j

0.000000+0.000000j

A--

0.643091+0.051436j

0.643091+0.051436j

1.08e-16

ArK(1430)2

\(\mathcal{H}^\mathrm{LS,production}_{K(1430), 1, \frac{1}{2}}\)

A++

-0.643091-0.051436j

-0.643091-0.051436j

2.09e-16

A+-

0.000000+0.000000j

0.000000+0.000000j

A-+

-0.000000+0.000000j

0.000000+0.000000j

A--

0.643091+0.051436j

0.643091+0.051436j

2.09e-16

ArK(700)1

\(\mathcal{H}^\mathrm{LS,production}_{K(700), 0, \frac{1}{2}}\)

A++

-1.070937+2.282902j

-1.070937+2.282902j

3.94e-16

A+-

0.000000+0.000000j

0.000000+0.000000j

A-+

-0.000000+0.000000j

0.000000+0.000000j

A--

-1.070937+2.282902j

-1.070937+2.282902j

3.94e-16

ArK(700)2

\(\mathcal{H}^\mathrm{LS,production}_{K(700), 1, \frac{1}{2}}\)

A++

1.070937-2.282902j

1.070937-2.282902j

4.40e-16

A+-

0.000000+0.000000j

0.000000+0.000000j

A-+

-0.000000+0.000000j

0.000000+0.000000j

A--

-1.070937+2.282902j

-1.070937+2.282902j

4.40e-16

ArL(1405)1

\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(1405), 0, \frac{1}{2}}\)

A++

-0.398444+0.097295j

-0.398444+0.097295j

8.48e-16

A+-

-0.009584+0.002340j

-0.009584+0.002340j

7.95e-14

A-+

0.009584-0.002340j

0.009584-0.002340j

8.06e-14

A--

-0.398444+0.097295j

-0.398444+0.097295j

8.48e-16

ArL(1405)2

\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(1405), 1, \frac{1}{2}}\)

A++

0.163270-0.039869j

0.163270-0.039869j

2.06e-14

A+-

0.311387-0.076037j

0.311387-0.076037j

2.48e-14

A-+

0.311387-0.076037j

0.311387-0.076037j

2.50e-14

A--

-0.163270+0.039869j

-0.163270+0.039869j

2.06e-14

ArL(1520)1

\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(1520), 1, \frac{3}{2}}\)

A++

0.117387-0.135999j

0.117387-0.135999j

3.04e-14

A+-

-0.599627+0.694701j

-0.599627+0.694701j

1.89e-14

A-+

-0.599627+0.694701j

-0.599627+0.694701j

1.90e-14

A--

-0.117387+0.135999j

-0.117387+0.135999j

3.03e-14

ArL(1520)2

\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(1520), 2, \frac{3}{2}}\)

A++

0.330006-0.382330j

0.330006-0.382330j

7.41e-14

A+-

0.278127-0.322225j

0.278127-0.322225j

7.88e-14

A-+

-0.278127+0.322225j

-0.278127+0.322225j

7.87e-14

A--

0.330006-0.382330j

0.330006-0.382330j

7.41e-14

ArL(1600)1

\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(1600), 0, \frac{1}{2}}\)

A++

-0.431782+0.475775j

-0.431782+0.475775j

1.51e-15

A+-

0.110199-0.121426j

0.110199-0.121426j

9.38e-15

A-+

0.110199-0.121426j

0.110199-0.121426j

9.90e-15

A--

0.431782-0.475775j

0.431782-0.475775j

1.42e-15

ArL(1600)2

\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(1600), 1, \frac{1}{2}}\)

A++

0.102310-0.112734j

0.102310-0.112734j

3.06e-14

A+-

-0.389148+0.428797j

-0.389148+0.428797j

2.20e-14

A-+

0.389148-0.428797j

0.389148-0.428797j

2.21e-14

A--

0.102310-0.112734j

0.102310-0.112734j

3.06e-14

ArL(1670)1

\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(1670), 0, \frac{1}{2}}\)

A++

-0.817566+0.061827j

-0.817566+0.061827j

1.60e-16

A+-

-0.019666+0.001487j

-0.019666+0.001487j

7.55e-14

A-+

0.019666-0.001487j

0.019666-0.001487j

7.62e-14

A--

-0.817566+0.061827j

-0.817566+0.061827j

1.60e-16

ArL(1670)2

\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(1670), 1, \frac{1}{2}}\)

A++

0.345271-0.026110j

0.345271-0.026110j

1.85e-14

A+-

0.658498-0.049798j

0.658498-0.049798j

2.38e-14

A-+

0.658498-0.049798j

0.658498-0.049798j

2.36e-14

A--

-0.345271+0.026110j

-0.345271+0.026110j

1.87e-14

ArL(1690)1

\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(1690), 1, \frac{3}{2}}\)

A++

0.110308-0.071511j

0.110308-0.071511j

2.95e-14

A+-

-0.563468+0.365287j

-0.563468+0.365287j

1.82e-14

A-+

-0.563468+0.365287j

-0.563468+0.365287j

1.80e-14

A--

-0.110308+0.071511j

-0.110308+0.071511j

2.97e-14

ArL(1690)2

\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(1690), 2, \frac{3}{2}}\)

A++

0.333287-0.216064j

0.333287-0.216064j

7.61e-14

A+-

0.280891-0.182097j

0.280891-0.182097j

8.08e-14

A-+

-0.280891+0.182097j

-0.280891+0.182097j

8.08e-14

A--

0.333287-0.216064j

0.333287-0.216064j

7.61e-14

ArL(2000)1

\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(2000), 0, \frac{1}{2}}\)

A++

1.036314+1.105950j

1.036314+1.105950j

1.14e-15

A+-

0.024928+0.026603j

0.024928+0.026603j

7.76e-14

A-+

-0.024928-0.026603j

-0.024928-0.026603j

7.71e-14

A--

1.036314+1.105950j

1.036314+1.105950j

1.24e-15

ArL(2000)2

\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(2000), 1, \frac{1}{2}}\)

A++

-0.529297-0.564863j

-0.529297-0.564863j

1.87e-14

A+-

-1.009471-1.077303j

-1.009471-1.077303j

2.34e-14

A-+

-1.009471-1.077303j

-1.009471-1.077303j

2.34e-14

A--

0.529297+0.564863j

0.529297+0.564863j

1.87e-14