ComPWA
Common Partial-Wave-Analysis Framework
ComPWA::Physics::Dynamics::RelativisticBreitWigner Namespace Reference

Classes

struct  InputInfo
 

Typedefs

using BreitWignerFunction = std::function< std::complex< double >(double, double, double, double, double, unsigned int, double, std::shared_ptr< FormFactor >)>
 

Functions

std::complex< double > relativisticBreitWigner (double mSq, double mR, double ma, double mb, double width, unsigned int L, double mesonRadius, std::shared_ptr< FormFactor > FormFactorFunctor)
 Relativistic Breit-Wigner model with barrier factors. More...
 
std::complex< double > relativisticBreitWignerAnalyticCont (double mSq, double mR, double ma, double mb, double width, unsigned int L, double mesonRadius, std::shared_ptr< FormFactor > FormFactorFunctor)
 Relativistic Breit-Wigner model with barrier factors. More...
 
std::shared_ptr< ComPWA::FunctionTree::TreeNodecreateFunctionTree (InputInfo Params, std::shared_ptr< ComPWA::FunctionTree::Value< std::vector< double >>> InvMassSquared)
 

Typedef Documentation

◆ BreitWignerFunction

using ComPWA::Physics::Dynamics::RelativisticBreitWigner::BreitWignerFunction = typedef std::function<std::complex<double>( double, double, double, double, double, unsigned int, double, std::shared_ptr<FormFactor>)>

Definition at line 39 of file RelativisticBreitWigner.hpp.

Function Documentation

◆ createFunctionTree()

std::shared_ptr< TreeNode > ComPWA::Physics::Dynamics::RelativisticBreitWigner::createFunctionTree ( RelativisticBreitWigner::InputInfo  Params,
std::shared_ptr< ComPWA::FunctionTree::Value< std::vector< double >>>  InvMassSquared 
)

Definition at line 17 of file RelativisticBreitWigner.cpp.

◆ relativisticBreitWigner()

std::complex<double> ComPWA::Physics::Dynamics::RelativisticBreitWigner::relativisticBreitWigner ( double  mSq,
double  mR,
double  ma,
double  mb,
double  width,
unsigned int  L,
double  mesonRadius,
std::shared_ptr< FormFactor FormFactorFunctor 
)
inline

Relativistic Breit-Wigner model with barrier factors.

The dynamical function implemented here is taken from PDG2018 (Eq.48.22) for the one channel case. The dynamic reaction

\[ \mathcal{A}_R(s) = \frac{g_p*g}{s - M_R^2 + i \sqrt{s} \Gamma_R B^2} \]

$ g_p, g$ are the coupling constants for production and decay and the barrier term $ B^2$ is parameterized according to Eq.48.23:

\[ B^2 = \left( \frac{q(\sqrt{s})}{q(M_R)} \right)^{2L+1} \times \left( \frac{M_R}{\sqrt{s}} \right) \times \left( \frac{F(\sqrt{s})}{F(\sqrt{s_R})} \right)^{2} \]

This corresponds to the Blatt Weisskopf form factors B_L like

\[ B^2 = \left( \frac{q(\sqrt{s})}{q(M_R)} \right) \times \left( \frac{M_R}{\sqrt{s}} \right) \times \left( \frac{B_L(\sqrt{s})}{B_L(\sqrt{s_R})} \right)^{2} \]

Parameters
mSqInvariant mass squared
mRMass of the resonant state
maMass of daughter particle
mbMass of daughter particle
widthDecay width
LOrbital angular momentum between two daughters a and b
mesonRadiusMeson Radius
FormFactorFunctorForm factor functor
Returns
Amplitude value

Definition at line 77 of file RelativisticBreitWigner.hpp.

◆ relativisticBreitWignerAnalyticCont()

std::complex<double> ComPWA::Physics::Dynamics::RelativisticBreitWigner::relativisticBreitWignerAnalyticCont ( double  mSq,
double  mR,
double  ma,
double  mb,
double  width,
unsigned int  L,
double  mesonRadius,
std::shared_ptr< FormFactor FormFactorFunctor 
)
inline

Relativistic Breit-Wigner model with barrier factors.

The dynamical function implemented here is taken from PDG2018 (Eq.48.22) for the one channel case. The dynamic reaction

\[ \mathcal{A}_R(s) = \frac{g_p*g}{s - M_R^2 + i \sqrt{s} \Gamma_R B^2} \]

$ g_p, g$ are the coupling constants for production and decay and the barrier term $ B^2$ is parameterized according to Eq.48.23:

\[ B^2 = \left( \frac{q(\sqrt{s})}{q(M_R)} \right)^{2L+1} \times \left( \frac{M_R}{\sqrt{s}} \right) \times \left( \frac{F(\sqrt{s})}{F(\sqrt{s_R})} \right)^{2} \]

This corresponds to the Blatt Weisskopf form factors B_L like

\[ B^2 = \left( \frac{q(\sqrt{s})}{q(M_R)} \right) \times \left( \frac{M_R}{\sqrt{s}} \right) \times \left( \frac{B_L(\sqrt{s})}{B_L(\sqrt{s_R})} \right)^{2} \]

Parameters
mSqInvariant mass squared
mRMass of the resonant state
maMass of daughter particle
mbMass of daughter particle
widthDecay width
LOrbital angular momentum between two daughters a and b
mesonRadiusMeson Radius
FormFactorFunctorForm factor functor
Returns
Amplitude value

Definition at line 145 of file RelativisticBreitWigner.hpp.