7.1. Dynamics lineshapes#
\[\begin{split}\displaystyle \begin{aligned}
F_{L}\left(z\right) \;&=\; \begin{cases} 1 & \text{for}\: L = 0 \\\frac{1}{\sqrt{z^{2} + 1}} & \text{for}\: L = 1 \\\frac{1}{\sqrt{z^{4} + 3 z^{2} + 9}} & \text{for}\: L = 2 \end{cases} \\
\end{aligned}\end{split}\]
\[\begin{split}\displaystyle \begin{aligned}
\lambda\left(x, y, z\right) \;&=\; x^{2} - 2 x y - 2 x z + y^{2} - 2 y z + z^{2} \\
\end{aligned}\end{split}\]
\[\begin{split}\displaystyle \begin{aligned}
\Gamma_{l_{R}}\left(s\right) \;&=\; \Gamma_{0} \frac{m}{\sqrt{s}} \frac{F_{l_{R}}\left(R q\left(s\right)\right)^{2}}{F_{l_{R}}\left(R q\left(m^{2}\right)\right)^{2}} \left(\frac{q\left(s\right)}{q\left(m^{2}\right)}\right)^{2 l_{R} + 1} \\
\end{aligned}\end{split}\]
7.1.1. Relativistic Breit-Wigner#
\[\begin{split}\displaystyle \begin{aligned}
\mathcal{R}^\mathrm{BW}_{l_{R},l_{\Lambda_c}}\left(s\right) \;&=\; \frac{\frac{F_{l_{R}}\left(R_\mathrm{res} q\left(s\right)\right)}{F_{l_{R}}\left(R_\mathrm{res} q\left(m^{2}\right)\right)} \frac{F_{l_{\Lambda_c}}\left(R_{\Lambda_c} q\left(m_\mathrm{top}^{2}\right)\right)}{F_{l_{\Lambda_c}}\left(R_{\Lambda_c} q\left(m_\mathrm{top}^{2}\right)\right)} \left(\frac{q\left(s\right)}{q\left(m^{2}\right)}\right)^{l_{R}} \left(\frac{q\left(m_\mathrm{top}^{2}\right)}{q\left(m_\mathrm{top}^{2}\right)}\right)^{l_{\Lambda_c}}}{m^{2} - i m \Gamma_{l_{R}}\left(s\right) - s} \\
\end{aligned}\end{split}\]
7.1.2. Bugg Breit-Wigner#
\[\begin{split}\displaystyle \begin{aligned}
\mathcal{R}^\mathrm{Bugg}\left(m_{K\pi}^{2}\right) \;&=\; \frac{1}{- \frac{i \Gamma_{0} m_{0} \left(m_{K\pi}^{2} - s_{A}\right) e^{- \gamma m_{K\pi}^{2}}}{m_{0}^{2} - s_{A}} + m_{0}^{2} - m_{K\pi}^{2}} \\
\end{aligned}\end{split}\]
\[\begin{split}\displaystyle \begin{aligned}
s_{A} \;&=\; m_{K}^{2} - \frac{m_{\pi}^{2}}{2} \\
q\left(m_{K\pi}^{2}\right) \;&=\; \frac{\sqrt{m_{K\pi}^{2} - \left(m_{K} - m_{\pi}\right)^{2}} \sqrt{m_{K\pi}^{2} - \left(m_{K} + m_{\pi}\right)^{2}}}{2 \sqrt{m_{K\pi}^{2}}} \\
\end{aligned}\end{split}\]
One of the models uses a Bugg Breit-Wigner with an exponential factor:
\[\displaystyle e^{- \alpha q_{0}\left(m_{0}^{2}\right)^{2}} \mathcal{R}^\mathrm{Bugg}\left(m_{K\pi}^{2}\right)\]
7.1.3. Flatté for S-waves#
\[\begin{split}\displaystyle \begin{aligned}
\mathcal{R}^\mathrm{Flatté}\left(s\right) \;&=\; \frac{1}{m^{2} - i m \left(\frac{\Gamma_{1} m q\left(s\right)}{\sqrt{s} q\left(m^{2}\right)} + \frac{\Gamma_{2} m q\left(s\right)}{\sqrt{s} q\left(m^{2}\right)}\right) - s} \\
\end{aligned}\end{split}\]
where, in this analysis, we couple the \(\Lambda(1405)\) resonance to the channel \(\Lambda(1405) \to \Sigma^-\pi^+\).