2. Cross-check with LHCb data#
Import Python libraries
Hide code cell content
import json
import logging
import os
from functools import cache
from textwrap import dedent
import numpy as np
import sympy as sp
from ampform_dpd import AmplitudeModel
from ampform_dpd.io import aslatex, cached, simplify_latex_rendering
from IPython.display import Markdown, Math
from tqdm.auto import tqdm
from polarimetry.data import create_data_transformer
from polarimetry.io import display_latex, mute_jax_warnings
from polarimetry.lhcb import (
ModelName,
get_conversion_factor,
get_conversion_factor_ls,
load_model,
load_model_builder,
parameter_key_to_symbol,
)
from polarimetry.lhcb.particle import load_particles
@cache
def load_model_cached(model_id: int | ModelName) -> AmplitudeModel:
return load_model(MODEL_FILE, PARTICLES, model_id)
mute_jax_warnings()
simplify_latex_rendering()
NO_LOG = "EXECUTE_NB" in os.environ
if NO_LOG:
logging.disable(logging.CRITICAL)
MODEL_FILE = "../data/model-definitions.yaml"
PARTICLES = load_particles("../data/particle-definitions.yaml")
DEFAULT_MODEL = load_model_cached(model_id=0)
2.1. Lineshape comparison#
We compute a few lineshapes for the following point in phase space and compare it with the values from [1]:
Load phase space point
Hide code cell source
σ1, σ2, σ3 = sp.symbols("sigma1:4", nonnegative=True)
lineshape_vars = crosscheck_data["mainvars"]
lineshape_subs = {
σ1: lineshape_vars["m2kpi"],
σ2: lineshape_vars["m2pk"],
**DEFAULT_MODEL.parameter_defaults,
}
lineshape_vars
{'costhetap': -0.9949949110827053,
'm2kpi': 0.7980703453578917,
'm2pk': 3.6486261122281745,
'phikpi': -0.4,
'phip': -0.3}
The lineshapes are computed for the following decay chains:
Load selected decay chains
Hide code cell source
Values for LHCb-PAPER-2022-002
Hide code cell source
crosscheck_data["lineshapes"]
{'BW_K(892)_p^1_q^0': '(2.1687201455088894+23.58225917009096j)',
'BW_L(1405)_p^0_q^0': '(-0.5636481410171861+0.13763637759224928j)',
'BW_L(1690)_p^2_q^1': '(-1.5078327158518026+0.9775036395061584j)'}
Values as computed by this framework
Hide code cell source
def build_dynamics(c) -> sp.Expr:
return builder.dynamics_choices.get_builder(c)(c).expression.doit()
builder = load_model_builder(MODEL_FILE, PARTICLES, model_id=0)
K892_bw_val = build_dynamics(K892_chain).xreplace(lineshape_subs).n()
L1405_bw_val = build_dynamics(L1405_chain).xreplace(lineshape_subs).n()
L1690_bw_val = build_dynamics(L1690_chain).xreplace(lineshape_subs).n()
display_latex([K892_bw_val, L1405_bw_val, L1690_bw_val])
Assert that these values are equal
Hide code cell source
lineshape_decimals = 13
np.testing.assert_array_almost_equal(
np.array(list(map(complex, crosscheck_data["lineshapes"].values()))),
np.array(list(map(complex, [K892_bw_val, L1405_bw_val, L1690_bw_val]))),
decimal=lineshape_decimals,
)
src = f"""
:::{{tip}}
These values are **equal up to {lineshape_decimals} decimals**.
:::
"""
Markdown(src)
Tip
These values are equal up to 13 decimals.
2.2. Amplitude comparison#
The amplitude for each decay chain and each outer state helicity combination are evaluated on the following point in phase space:
Load phase space point as in DPD coordinates
Hide code cell source
amplitude_vars = dict(crosscheck_data["chainvars"])
transformer = create_data_transformer(DEFAULT_MODEL)
input_data = {
str(σ1): amplitude_vars["m2kpi"],
str(σ2): amplitude_vars["m2pk"],
str(σ3): amplitude_vars["m2ppi"],
}
input_data = {k: float(v) for k, v in transformer(input_data).items()}
display_latex({sp.Symbol(k): v for k, v in input_data.items()})
Code for creating functions for each sub-amplitude
Hide code cell source
@cache
def create_amplitude_functions(
model_id: int | ModelName,
) -> dict[tuple[sp.Rational, sp.Rational], sp.Expr]:
model = load_model(MODEL_FILE, PARTICLES, model_id)
production_couplings = get_production_couplings(model_id)
fixed_parameters = {
s: v
for s, v in model.parameter_defaults.items()
if s not in production_couplings
}
exprs = formulate_amplitude_expressions(model_id)
return {
k: cached.lambdify(
cached.xreplace(expr, fixed_parameters),
parameters=production_couplings,
backend="numpy",
)
for k, expr in tqdm(exprs.items(), desc="Performing doit", disable=NO_LOG)
}
@cache
def formulate_amplitude_expressions(
model_id: int | str,
) -> dict[tuple[sp.Rational, sp.Rational], sp.Expr]:
builder = load_model_builder(MODEL_FILE, PARTICLES, model_id)
half = sp.Rational(1, 2)
exprs = {
(λ_Λc, λ_p): builder.formulate_aligned_amplitude(
λ_Λc, λ_p, 0, 0, reference_subsystem=1
)[0]
for λ_Λc in [-half, +half]
for λ_p in [-half, +half]
}
model = load_model(MODEL_FILE, PARTICLES, model_id)
return {
k: cached.unfold(expr, model.amplitudes)
for k, expr in tqdm(exprs.items(), desc="Unfolding expressions", disable=NO_LOG)
}
@cache
def get_production_couplings(model_id: int | str) -> dict[sp.Indexed, complex]:
model = load_model(MODEL_FILE, PARTICLES, model_id)
return {
symbol: value
for symbol, value in model.parameter_defaults.items()
if isinstance(symbol, sp.Indexed)
if "production" in str(symbol)
}
Code for creating a comparison table
Hide code cell source
def plusminus_to_helicity(plusminus: str) -> sp.Expr:
half = sp.Rational(1, 2)
if plusminus == "+":
return +half
if plusminus == "-":
return -half
raise NotImplementedError(plusminus)
def create_comparison_table(
model_id: int | str, decimals: int | None = None
) -> Markdown:
min_ls = not is_ls_model(model_id)
amplitude_funcs = create_amplitude_functions(model_id)
real_amp_crosscheck = {
k: v
for k, v in get_amplitude_crosscheck_data(model_id).items()
if k.startswith("Ar")
}
production_couplings = get_production_couplings(model_id)
couplings_to_zero = {str(symbol): 0 for symbol in production_couplings}
src = ""
if decimals is not None:
src += dedent(
f"""
:::{{tip}}
Computed amplitudes are equal to LHCb amplitudes up to **{decimals} decimals**.
:::
"""
)
src += dedent(
"""
| | Computed | Expected | Difference |
| ---:| --------:| --------:| ----------:|
"""
)
for amp_identifier, entry in real_amp_crosscheck.items():
coupling = parameter_key_to_symbol(
amp_identifier.replace("Ar", "A"),
particle_definitions=PARTICLES,
min_ls=min_ls,
)
src += f"| **`{amp_identifier}`** | ${sp.latex(coupling)}$ |\n"
for matrix_key, expected in entry.items():
matrix_suffix = matrix_key[1:] # ++, +-, -+, --
λ_Λc, λ_p = map(plusminus_to_helicity, matrix_suffix)
func = amplitude_funcs[λ_Λc, -λ_p]
func.update_parameters(couplings_to_zero)
func.update_parameters({str(coupling): 1})
computed = complex(func(input_data))
computed *= determine_conversion_factor(coupling, λ_p, min_ls)
expected = complex(expected)
if abs(expected) != 0.0:
diff = abs(computed - expected) / abs(expected)
if diff < 1e-6:
diff = f"{diff:.2e}"
else:
diff = f'<span style="color:red;">{diff:.2e}</span>'
else:
diff = ""
src += f"| `{matrix_key}` | {computed:>.6f} | {expected:>.6f} | {diff} |\n"
if decimals is not None:
np.testing.assert_array_almost_equal(
computed,
expected,
decimal=decimals,
err_msg=f" {amp_identifier} {matrix_key}",
)
return Markdown(src)
def determine_conversion_factor(
coupling: sp.Indexed, λ_p: sp.Rational, min_ls: bool
) -> int:
resonance_latex = str(coupling.indices[0])
resonance, *_ = (p for p in PARTICLES.values() if p.latex == resonance_latex)
if min_ls:
factor = get_conversion_factor(resonance)
else:
_, L, S = coupling.indices
factor = get_conversion_factor_ls(resonance, L, S)
half = sp.Rational(1, 2)
factor *= int((-1) ** (half + λ_p)) # # additional sign flip for amplitude
return factor
def is_ls_model(model_id: int | str) -> bool:
if isinstance(model_id, int):
return model_id == 17
return "LS couplings" in model_id
def get_amplitude_crosscheck_data(model_id: int | str) -> dict[str, complex]:
if is_ls_model(model_id):
return crosscheck_data["chains_LS"]
return crosscheck_data["chains"]
2.2.1. Default model#
Show code cell source
Hide code cell source
create_comparison_table(model_id=0, decimals=13)
Show code cell output
Hide code cell output
Tip
Computed amplitudes are equal to LHCb amplitudes up to 13 decimals.
Computed |
Expected |
Difference |
|
|---|---|---|---|
|
\(\mathcal{H}^\mathrm{production}_{\Delta(1232), - \frac{1}{2}, 0}\) |
||
|
-0.488498+0.517710j |
-0.488498+0.517710j |
2.05e-14 |
|
0.894898-0.948412j |
0.894898-0.948412j |
4.12e-15 |
|
0.121490-0.128755j |
0.121490-0.128755j |
2.36e-14 |
|
-0.222563+0.235872j |
-0.222563+0.235872j |
4.63e-15 |
|
\(\mathcal{H}^\mathrm{production}_{\Delta(1232), \frac{1}{2}, 0}\) |
||
|
-0.222563+0.235872j |
-0.222563+0.235872j |
4.63e-15 |
|
-0.121490+0.128755j |
-0.121490+0.128755j |
2.37e-14 |
|
-0.894898+0.948412j |
-0.894898+0.948412j |
4.42e-15 |
|
-0.488498+0.517710j |
-0.488498+0.517710j |
2.05e-14 |
|
\(\mathcal{H}^\mathrm{production}_{\Delta(1600), - \frac{1}{2}, 0}\) |
||
|
0.289160+0.081910j |
0.289160+0.081910j |
2.55e-14 |
|
-0.529724-0.150054j |
-0.529724-0.150054j |
4.53e-15 |
|
-0.071915-0.020371j |
-0.071915-0.020371j |
2.90e-14 |
|
0.131743+0.037319j |
0.131743+0.037319j |
8.03e-15 |
|
\(\mathcal{H}^\mathrm{production}_{\Delta(1600), \frac{1}{2}, 0}\) |
||
|
0.131743+0.037319j |
0.131743+0.037319j |
8.03e-15 |
|
0.071915+0.020371j |
0.071915+0.020371j |
2.89e-14 |
|
0.529724+0.150054j |
0.529724+0.150054j |
4.59e-15 |
|
0.289160+0.081910j |
0.289160+0.081910j |
2.55e-14 |
|
\(\mathcal{H}^\mathrm{production}_{\Delta(1700), - \frac{1}{2}, 0}\) |
||
|
-0.018885-0.001757j |
-0.018885-0.001757j |
1.57e-13 |
|
0.315695+0.029366j |
0.315695+0.029366j |
1.17e-14 |
|
0.004697+0.000437j |
0.004697+0.000437j |
1.54e-13 |
|
-0.078514-0.007303j |
-0.078514-0.007303j |
1.47e-14 |
|
\(\mathcal{H}^\mathrm{production}_{\Delta(1700), \frac{1}{2}, 0}\) |
||
|
0.078514+0.007303j |
0.078514+0.007303j |
1.47e-14 |
|
0.004697+0.000437j |
0.004697+0.000437j |
1.54e-13 |
|
0.315695+0.029366j |
0.315695+0.029366j |
1.17e-14 |
|
0.018885+0.001757j |
0.018885+0.001757j |
1.57e-13 |
|
\(\mathcal{H}^\mathrm{production}_{K(892), 0, - \frac{1}{2}}\) |
||
|
-0.537695-5.846793j |
-0.537695-5.846793j |
3.05e-15 |
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
\(\mathcal{H}^\mathrm{production}_{K(892), -1, - \frac{1}{2}}\) |
||
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
1.485636+16.154534j |
1.485636+16.154534j |
2.58e-15 |
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
\(\mathcal{H}^\mathrm{production}_{K(892), 1, \frac{1}{2}}\) |
||
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
-1.485636-16.154534j |
-1.485636-16.154534j |
2.58e-15 |
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
\(\mathcal{H}^\mathrm{production}_{K(892), 0, \frac{1}{2}}\) |
||
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.537695-5.846793j |
-0.537695-5.846793j |
3.05e-15 |
|
\(\mathcal{H}^\mathrm{production}_{K(1430), 0, \frac{1}{2}}\) |
||
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.909456+0.072819j |
0.909456+0.072819j |
1.22e-16 |
|
\(\mathcal{H}^\mathrm{production}_{K(1430), 0, - \frac{1}{2}}\) |
||
|
0.909456+0.072819j |
0.909456+0.072819j |
1.22e-16 |
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
\(\mathcal{H}^\mathrm{production}_{K(700), 0, \frac{1}{2}}\) |
||
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
-1.708879+3.380634j |
-1.708879+3.380634j |
4.97e-16 |
|
\(\mathcal{H}^\mathrm{production}_{K(700), 0, - \frac{1}{2}}\) |
||
|
-1.708879+3.380634j |
-1.708879+3.380634j |
4.97e-16 |
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
\(\mathcal{H}^\mathrm{production}_{\Lambda(1405), - \frac{1}{2}, 0}\) |
||
|
-0.412613+0.100755j |
-0.412613+0.100755j |
5.67e-15 |
|
-0.256372+0.062603j |
-0.256372+0.062603j |
1.21e-14 |
|
-0.242818+0.059293j |
-0.242818+0.059293j |
2.39e-14 |
|
-0.150872+0.036841j |
-0.150872+0.036841j |
1.73e-14 |
|
\(\mathcal{H}^\mathrm{production}_{\Lambda(1405), \frac{1}{2}, 0}\) |
||
|
-0.150872+0.036841j |
-0.150872+0.036841j |
1.73e-14 |
|
0.242818-0.059293j |
0.242818-0.059293j |
2.39e-14 |
|
0.256372-0.062603j |
0.256372-0.062603j |
1.21e-14 |
|
-0.412613+0.100755j |
-0.412613+0.100755j |
5.67e-15 |
|
\(\mathcal{H}^\mathrm{production}_{\Lambda(1520), - \frac{1}{2}, 0}\) |
||
|
0.257632-0.288056j |
0.257632-0.288056j |
6.95e-14 |
|
0.731594-0.817988j |
0.731594-0.817988j |
2.37e-14 |
|
0.151613-0.169517j |
0.151613-0.169517j |
9.87e-14 |
|
0.430534-0.481376j |
0.430534-0.481376j |
6.59e-15 |
|
\(\mathcal{H}^\mathrm{production}_{\Lambda(1520), \frac{1}{2}, 0}\) |
||
|
-0.430534+0.481376j |
-0.430534+0.481376j |
6.59e-15 |
|
0.151613-0.169517j |
0.151613-0.169517j |
9.88e-14 |
|
0.731594-0.817988j |
0.731594-0.817988j |
2.35e-14 |
|
-0.257632+0.288056j |
-0.257632+0.288056j |
6.95e-14 |
|
\(\mathcal{H}^\mathrm{production}_{\Lambda(1600), - \frac{1}{2}, 0}\) |
||
|
-0.385436+0.424707j |
-0.385436+0.424707j |
2.02e-14 |
|
0.382669-0.421658j |
0.382669-0.421658j |
4.78e-15 |
|
-0.226825+0.249935j |
-0.226825+0.249935j |
9.38e-15 |
|
0.225196-0.248141j |
0.225196-0.248141j |
3.43e-14 |
|
\(\mathcal{H}^\mathrm{production}_{\Lambda(1600), \frac{1}{2}, 0}\) |
||
|
-0.225196+0.248141j |
-0.225196+0.248141j |
3.42e-14 |
|
-0.226825+0.249935j |
-0.226825+0.249935j |
9.38e-15 |
|
0.382669-0.421658j |
0.382669-0.421658j |
4.71e-15 |
|
0.385436-0.424707j |
0.385436-0.424707j |
2.02e-14 |
|
\(\mathcal{H}^\mathrm{production}_{\Lambda(1670), - \frac{1}{2}, 0}\) |
||
|
-0.846639+0.064025j |
-0.846639+0.064025j |
5.89e-15 |
|
-0.526049+0.039781j |
-0.526049+0.039781j |
1.20e-14 |
|
-0.498237+0.037678j |
-0.498237+0.037678j |
2.36e-14 |
|
-0.309574+0.023411j |
-0.309574+0.023411j |
1.72e-14 |
|
\(\mathcal{H}^\mathrm{production}_{\Lambda(1670), \frac{1}{2}, 0}\) |
||
|
-0.309574+0.023411j |
-0.309574+0.023411j |
1.72e-14 |
|
0.498237-0.037678j |
0.498237-0.037678j |
2.36e-14 |
|
0.526049-0.039781j |
0.526049-0.039781j |
1.20e-14 |
|
-0.846639+0.064025j |
-0.846639+0.064025j |
5.89e-15 |
|
\(\mathcal{H}^\mathrm{production}_{\Lambda(1690), - \frac{1}{2}, 0}\) |
||
|
0.232446-0.150691j |
0.232446-0.150691j |
7.09e-14 |
|
0.660073-0.427915j |
0.660073-0.427915j |
2.23e-14 |
|
0.136791-0.088680j |
0.136791-0.088680j |
1.00e-13 |
|
0.388445-0.251823j |
0.388445-0.251823j |
7.26e-15 |
|
\(\mathcal{H}^\mathrm{production}_{\Lambda(1690), \frac{1}{2}, 0}\) |
||
|
-0.388445+0.251823j |
-0.388445+0.251823j |
7.31e-15 |
|
0.136791-0.088680j |
0.136791-0.088680j |
1.00e-13 |
|
0.660073-0.427915j |
0.660073-0.427915j |
2.21e-14 |
|
-0.232446+0.150691j |
-0.232446+0.150691j |
7.09e-14 |
|
\(\mathcal{H}^\mathrm{production}_{\Lambda(2000), - \frac{1}{2}, 0}\) |
||
|
1.072514+1.195841j |
1.072514+1.195841j |
5.50e-15 |
|
0.666394+0.743022j |
0.666394+0.743022j |
1.19e-14 |
|
0.631162+0.703738j |
0.631162+0.703738j |
2.41e-14 |
|
0.392165+0.437260j |
0.392165+0.437260j |
1.77e-14 |
|
\(\mathcal{H}^\mathrm{production}_{\Lambda(2000), \frac{1}{2}, 0}\) |
||
|
0.392165+0.437260j |
0.392165+0.437260j |
1.77e-14 |
|
-0.631162-0.703738j |
-0.631162-0.703738j |
2.41e-14 |
|
-0.666394-0.743022j |
-0.666394-0.743022j |
1.19e-14 |
|
1.072514+1.195841j |
1.072514+1.195841j |
5.50e-15 |
2.2.2. LS-model#
Show code cell source
Hide code cell source
create_comparison_table(
"Alternative amplitude model obtained using LS couplings",
decimals=13,
)
Show code cell output
Hide code cell output
Tip
Computed amplitudes are equal to LHCb amplitudes up to 13 decimals.
Computed |
Expected |
Difference |
|
|---|---|---|---|
|
\(\mathcal{H}^\mathrm{LS,production}_{\Delta(1232), 1, \frac{3}{2}}\) |
||
|
0.502796-0.532862j |
0.502796-0.532862j |
1.13e-14 |
|
-0.546882+0.579585j |
-0.546882+0.579585j |
9.81e-15 |
|
0.546882-0.579585j |
0.546882-0.579585j |
9.81e-15 |
|
0.502796-0.532862j |
0.502796-0.532862j |
1.11e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{\Delta(1232), 2, \frac{3}{2}}\) |
||
|
-0.180489+0.191282j |
-0.180489+0.191282j |
3.22e-14 |
|
0.689818-0.731068j |
0.689818-0.731068j |
4.38e-15 |
|
0.689818-0.731068j |
0.689818-0.731068j |
4.53e-15 |
|
0.180489-0.191282j |
0.180489-0.191282j |
3.27e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{\Delta(1600), 1, \frac{3}{2}}\) |
||
|
-0.297624-0.084307j |
-0.297624-0.084307j |
1.87e-14 |
|
0.323720+0.091699j |
0.323720+0.091699j |
1.63e-15 |
|
-0.323720-0.091699j |
-0.323720-0.091699j |
1.70e-15 |
|
-0.297624-0.084307j |
-0.297624-0.084307j |
1.85e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{\Delta(1600), 2, \frac{3}{2}}\) |
||
|
0.143541+0.040660j |
0.143541+0.040660j |
3.83e-14 |
|
-0.548604-0.155402j |
-0.548604-0.155402j |
5.53e-15 |
|
-0.548604-0.155402j |
-0.548604-0.155402j |
5.58e-15 |
|
-0.143541-0.040660j |
-0.143541-0.040660j |
3.85e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{\Delta(1700), 1, \frac{3}{2}}\) |
||
|
-0.042164-0.003922j |
-0.042164-0.003922j |
6.88e-14 |
|
-0.226551-0.021074j |
-0.226551-0.021074j |
8.83e-15 |
|
-0.226551-0.021074j |
-0.226551-0.021074j |
8.95e-15 |
|
0.042164+0.003922j |
0.042164+0.003922j |
6.91e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{\Delta(1700), 2, \frac{3}{2}}\) |
||
|
-0.105349-0.009800j |
-0.105349-0.009800j |
2.01e-14 |
|
0.336381+0.031290j |
0.336381+0.031290j |
1.23e-14 |
|
-0.336381-0.031290j |
-0.336381-0.031290j |
1.23e-14 |
|
-0.105349-0.009800j |
-0.105349-0.009800j |
2.03e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{K(892), 0, \frac{1}{2}}\) |
||
|
0.219513+2.386943j |
0.219513+2.386943j |
3.09e-15 |
|
-0.857733-9.326825j |
-0.857733-9.326825j |
2.51e-15 |
|
-0.857733-9.326825j |
-0.857733-9.326825j |
2.51e-15 |
|
-0.219513-2.386943j |
-0.219513-2.386943j |
3.21e-15 |
|
\(\mathcal{H}^\mathrm{LS,production}_{K(892), 1, \frac{1}{2}}\) |
||
|
0.219549+2.387337j |
0.219549+2.387337j |
5.74e-15 |
|
-0.857874-9.328364j |
-0.857874-9.328364j |
4.06e-15 |
|
0.857874+9.328364j |
0.857874+9.328364j |
3.91e-15 |
|
0.219549+2.387337j |
0.219549+2.387337j |
5.74e-15 |
|
\(\mathcal{H}^\mathrm{LS,production}_{K(892), 1, \frac{3}{2}}\) |
||
|
0.310489+3.376204j |
0.310489+3.376204j |
4.48e-15 |
|
0.606609+6.596150j |
0.606609+6.596150j |
3.90e-15 |
|
-0.606609-6.596150j |
-0.606609-6.596150j |
4.01e-15 |
|
0.310489+3.376204j |
0.310489+3.376204j |
4.48e-15 |
|
\(\mathcal{H}^\mathrm{LS,production}_{K(892), 2, \frac{3}{2}}\) |
||
|
0.310629+3.377724j |
0.310629+3.377724j |
4.48e-15 |
|
0.606882+6.599119j |
0.606882+6.599119j |
3.06e-15 |
|
0.606882+6.599119j |
0.606882+6.599119j |
3.06e-15 |
|
-0.310629-3.377724j |
-0.310629-3.377724j |
4.48e-15 |
|
\(\mathcal{H}^\mathrm{LS,production}_{K(1430), 0, \frac{1}{2}}\) |
||
|
0.643091+0.051436j |
0.643091+0.051436j |
1.08e-16 |
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.643091+0.051436j |
0.643091+0.051436j |
1.08e-16 |
|
\(\mathcal{H}^\mathrm{LS,production}_{K(1430), 1, \frac{1}{2}}\) |
||
|
-0.643091-0.051436j |
-0.643091-0.051436j |
2.09e-16 |
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
0.643091+0.051436j |
0.643091+0.051436j |
2.09e-16 |
|
\(\mathcal{H}^\mathrm{LS,production}_{K(700), 0, \frac{1}{2}}\) |
||
|
-1.070937+2.282902j |
-1.070937+2.282902j |
3.94e-16 |
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
-1.070937+2.282902j |
-1.070937+2.282902j |
3.94e-16 |
|
\(\mathcal{H}^\mathrm{LS,production}_{K(700), 1, \frac{1}{2}}\) |
||
|
1.070937-2.282902j |
1.070937-2.282902j |
4.40e-16 |
|
0.000000+0.000000j |
0.000000+0.000000j |
|
|
-0.000000+0.000000j |
0.000000+0.000000j |
|
|
-1.070937+2.282902j |
-1.070937+2.282902j |
4.40e-16 |
|
\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(1405), 0, \frac{1}{2}}\) |
||
|
-0.398444+0.097295j |
-0.398444+0.097295j |
2.89e-16 |
|
-0.009584+0.002340j |
-0.009584+0.002340j |
6.53e-13 |
|
0.009584-0.002340j |
0.009584-0.002340j |
6.53e-13 |
|
-0.398444+0.097295j |
-0.398444+0.097295j |
2.89e-16 |
|
\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(1405), 1, \frac{1}{2}}\) |
||
|
0.163270-0.039869j |
0.163270-0.039869j |
1.89e-14 |
|
0.311387-0.076037j |
0.311387-0.076037j |
5.50e-15 |
|
0.311387-0.076037j |
0.311387-0.076037j |
5.50e-15 |
|
-0.163270+0.039869j |
-0.163270+0.039869j |
1.90e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(1520), 1, \frac{3}{2}}\) |
||
|
0.117387-0.135999j |
0.117387-0.135999j |
8.65e-14 |
|
-0.599627+0.694701j |
-0.599627+0.694701j |
3.12e-15 |
|
-0.599627+0.694701j |
-0.599627+0.694701j |
3.12e-15 |
|
-0.117387+0.135999j |
-0.117387+0.135999j |
8.63e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(1520), 2, \frac{3}{2}}\) |
||
|
0.330006-0.382330j |
0.330006-0.382330j |
3.13e-14 |
|
0.278127-0.322225j |
0.278127-0.322225j |
5.42e-14 |
|
-0.278127+0.322225j |
-0.278127+0.322225j |
5.42e-14 |
|
0.330006-0.382330j |
0.330006-0.382330j |
3.13e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(1600), 0, \frac{1}{2}}\) |
||
|
-0.431782+0.475775j |
-0.431782+0.475775j |
1.93e-16 |
|
0.110199-0.121426j |
0.110199-0.121426j |
1.86e-15 |
|
0.110199-0.121426j |
0.110199-0.121426j |
1.74e-15 |
|
0.431782-0.475775j |
0.431782-0.475775j |
1.93e-16 |
|
\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(1600), 1, \frac{1}{2}}\) |
||
|
0.102310-0.112734j |
0.102310-0.112734j |
9.63e-14 |
|
-0.389148+0.428797j |
-0.389148+0.428797j |
6.59e-15 |
|
0.389148-0.428797j |
0.389148-0.428797j |
6.59e-15 |
|
0.102310-0.112734j |
0.102310-0.112734j |
9.64e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(1670), 0, \frac{1}{2}}\) |
||
|
-0.817566+0.061827j |
-0.817566+0.061827j |
4.28e-16 |
|
-0.019666+0.001487j |
-0.019666+0.001487j |
6.52e-13 |
|
0.019666-0.001487j |
0.019666-0.001487j |
6.52e-13 |
|
-0.817566+0.061827j |
-0.817566+0.061827j |
3.03e-16 |
|
\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(1670), 1, \frac{1}{2}}\) |
||
|
0.345271-0.026110j |
0.345271-0.026110j |
1.86e-14 |
|
0.658498-0.049798j |
0.658498-0.049798j |
6.08e-15 |
|
0.658498-0.049798j |
0.658498-0.049798j |
5.91e-15 |
|
-0.345271+0.026110j |
-0.345271+0.026110j |
1.88e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(1690), 1, \frac{3}{2}}\) |
||
|
0.110308-0.071511j |
0.110308-0.071511j |
8.99e-14 |
|
-0.563468+0.365287j |
-0.563468+0.365287j |
3.67e-15 |
|
-0.563468+0.365287j |
-0.563468+0.365287j |
3.67e-15 |
|
-0.110308+0.071511j |
-0.110308+0.071511j |
8.99e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(1690), 2, \frac{3}{2}}\) |
||
|
0.333287-0.216064j |
0.333287-0.216064j |
3.08e-14 |
|
0.280891-0.182097j |
0.280891-0.182097j |
5.44e-14 |
|
-0.280891+0.182097j |
-0.280891+0.182097j |
5.46e-14 |
|
0.333287-0.216064j |
0.333287-0.216064j |
3.08e-14 |
|
\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(2000), 0, \frac{1}{2}}\) |
||
|
1.036314+1.105950j |
1.036314+1.105950j |
1.17e-15 |
|
0.024928+0.026603j |
0.024928+0.026603j |
6.53e-13 |
|
-0.024928-0.026603j |
-0.024928-0.026603j |
6.54e-13 |
|
1.036314+1.105950j |
1.036314+1.105950j |
1.17e-15 |
|
\(\mathcal{H}^\mathrm{LS,production}_{\Lambda(2000), 1, \frac{1}{2}}\) |
||
|
-0.529297-0.564863j |
-0.529297-0.564863j |
1.85e-14 |
|
-1.009471-1.077303j |
-1.009471-1.077303j |
6.35e-15 |
|
-1.009471-1.077303j |
-1.009471-1.077303j |
6.44e-15 |
|
0.529297+0.564863j |
0.529297+0.564863j |
1.84e-14 |