\[\begin{split}\displaystyle \begin{aligned}
  m_{K_{0}^{*}(1430)^{+}} \;&=\; 1.43 \\
  \Gamma_{K_{0}^{*}(1430)^{+}} \;&=\; 0.27 \\
  m_{K_{0}^{*}(1950)^{+}} \;&=\; 1.957 \\
  \Gamma_{K_{0}^{*}(1950)^{+}} \;&=\; 0.17 \\
  m_{K_{0}^{*}(700)^{+}} \;&=\; 0.838 \\
  \Gamma_{K_{0}^{*}(700)^{+}} \;&=\; 0.463 \\
  m_{K_{2}^{*}(1430)^{+}} \;&=\; 1.4273 \\
  \Gamma_{K_{2}^{*}(1430)^{+}} \;&=\; 0.1 \\
  \mathcal{H}^\mathrm{production}_{K_{2}^{*}(1430)^{+}, -1, - \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{K_{2}^{*}(1430)^{+}, 0, 0} \;&=\; 1 \\
  m_{K_{2}^{*}(1980)^{+}} \;&=\; 1.99 \\
  \Gamma_{K_{2}^{*}(1980)^{+}} \;&=\; 0.348 \\
  \mathcal{H}^\mathrm{production}_{K_{2}^{*}(1980)^{+}, -1, - \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{K_{2}^{*}(1980)^{+}, 0, 0} \;&=\; 1 \\
  m_{K_{3}^{*}(1780)^{+}} \;&=\; 1.779 \\
  \Gamma_{K_{3}^{*}(1780)^{+}} \;&=\; 0.161 \\
  \mathcal{H}^\mathrm{production}_{K_{3}^{*}(1780)^{+}, -1, - \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{K_{3}^{*}(1780)^{+}, 0, 0} \;&=\; 1 \\
  m_{K_{4}^{*}(2045)^{+}} \;&=\; 2.048 \\
  \Gamma_{K_{4}^{*}(2045)^{+}} \;&=\; 0.199 \\
  \mathcal{H}^\mathrm{production}_{K_{4}^{*}(2045)^{+}, -1, - \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{K_{4}^{*}(2045)^{+}, 0, 0} \;&=\; 1 \\
  m_{K^{*}(1410)^{+}} \;&=\; 1.414 \\
  \Gamma_{K^{*}(1410)^{+}} \;&=\; 0.232 \\
  \mathcal{H}^\mathrm{production}_{K^{*}(1410)^{+}, -1, - \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{K^{*}(1410)^{+}, 0, 0} \;&=\; 1 \\
  m_{K^{*}(1680)^{+}} \;&=\; 1.718 \\
  \Gamma_{K^{*}(1680)^{+}} \;&=\; 0.32 \\
  \mathcal{H}^\mathrm{production}_{K^{*}(1680)^{+}, -1, - \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{K^{*}(1680)^{+}, 0, 0} \;&=\; 1 \\
  m_{K^{*}(892)^{+}} \;&=\; 0.89167 \\
  \Gamma_{K^{*}(892)^{+}} \;&=\; 0.0514 \\
  \mathcal{H}^\mathrm{production}_{K^{*}(892)^{+}, -1, - \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{K^{*}(892)^{+}, 0, 0} \;&=\; 1 \\
  m_{\Sigma(1385)^{0}} \;&=\; 1.3837000000000002 \\
  \Gamma_{\Sigma(1385)^{0}} \;&=\; 0.036 \\
  \mathcal{H}^\mathrm{production}_{\Sigma(1385)^{0}, - \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{\Sigma(1385)^{0}, 0, - \frac{1}{2}} \;&=\; 1 \\
  m_{\Sigma(1660)^{0}} \;&=\; 1.66 \\
  \Gamma_{\Sigma(1660)^{0}} \;&=\; 0.2 \\
  \mathcal{H}^\mathrm{production}_{\Sigma(1660)^{0}, - \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{\Sigma(1660)^{0}, 0, - \frac{1}{2}} \;&=\; 1 \\
  m_{\Sigma(1670)^{0}} \;&=\; 1.675 \\
  \Gamma_{\Sigma(1670)^{0}} \;&=\; 0.07 \\
  \mathcal{H}^\mathrm{production}_{\Sigma(1670)^{0}, - \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{\Sigma(1670)^{0}, 0, - \frac{1}{2}} \;&=\; 1 \\
  m_{\Sigma(1750)^{0}} \;&=\; 1.75 \\
  \Gamma_{\Sigma(1750)^{0}} \;&=\; 0.15 \\
  \mathcal{H}^\mathrm{production}_{\Sigma(1750)^{0}, - \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{\Sigma(1750)^{0}, 0, - \frac{1}{2}} \;&=\; 1 \\
  m_{\Sigma(1775)^{0}} \;&=\; 1.775 \\
  \Gamma_{\Sigma(1775)^{0}} \;&=\; 0.12 \\
  \mathcal{H}^\mathrm{production}_{\Sigma(1775)^{0}, - \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{\Sigma(1775)^{0}, 0, - \frac{1}{2}} \;&=\; 1 \\
  m_{\Sigma(1940)^{0}} \;&=\; 1.91 \\
  \Gamma_{\Sigma(1940)^{0}} \;&=\; 0.22 \\
  \mathcal{H}^\mathrm{production}_{\Sigma(1940)^{0}, - \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{\Sigma(1940)^{0}, 0, - \frac{1}{2}} \;&=\; 1 \\
  m_{\Sigma(1915)^{0}} \;&=\; 1.915 \\
  \Gamma_{\Sigma(1915)^{0}} \;&=\; 0.12 \\
  \mathcal{H}^\mathrm{production}_{\Sigma(1915)^{0}, - \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{\Sigma(1915)^{0}, 0, - \frac{1}{2}} \;&=\; 1 \\
  m_{\Sigma(2030)^{0}} \;&=\; 2.03 \\
  \Gamma_{\Sigma(2030)^{0}} \;&=\; 0.18 \\
  \mathcal{H}^\mathrm{production}_{\Sigma(2030)^{0}, - \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{\Sigma(2030)^{0}, 0, - \frac{1}{2}} \;&=\; 1 \\
  m_{N(1650)^{+}} \;&=\; 1.65 \\
  \Gamma_{N(1650)^{+}} \;&=\; 0.125 \\
  \mathcal{H}^\mathrm{production}_{N(1650)^{+}, - \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{N(1650)^{+}, - \frac{1}{2}, 0} \;&=\; 1 \\
  m_{N(1675)^{+}} \;&=\; 1.675 \\
  \Gamma_{N(1675)^{+}} \;&=\; 0.145 \\
  \mathcal{H}^\mathrm{production}_{N(1675)^{+}, - \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{N(1675)^{+}, - \frac{1}{2}, 0} \;&=\; 1 \\
  m_{N(1680)^{+}} \;&=\; 1.685 \\
  \Gamma_{N(1680)^{+}} \;&=\; 0.12 \\
  \mathcal{H}^\mathrm{production}_{N(1680)^{+}, - \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{N(1680)^{+}, - \frac{1}{2}, 0} \;&=\; 1 \\
  m_{N(1700)^{+}} \;&=\; 1.72 \\
  \Gamma_{N(1700)^{+}} \;&=\; 0.2 \\
  \mathcal{H}^\mathrm{production}_{N(1700)^{+}, - \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{N(1700)^{+}, - \frac{1}{2}, 0} \;&=\; 1 \\
  m_{N(1710)^{+}} \;&=\; 1.71 \\
  \Gamma_{N(1710)^{+}} \;&=\; 0.14 \\
  \mathcal{H}^\mathrm{production}_{N(1710)^{+}, - \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{N(1710)^{+}, - \frac{1}{2}, 0} \;&=\; 1 \\
  m_{N(1720)^{+}} \;&=\; 1.72 \\
  \Gamma_{N(1720)^{+}} \;&=\; 0.25 \\
  \mathcal{H}^\mathrm{production}_{N(1720)^{+}, - \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{N(1720)^{+}, - \frac{1}{2}, 0} \;&=\; 1 \\
  m_{N(2190)^{+}} \;&=\; 2.18 \\
  \Gamma_{N(2190)^{+}} \;&=\; 0.4 \\
  \mathcal{H}^\mathrm{production}_{N(2190)^{+}, - \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{N(2190)^{+}, - \frac{1}{2}, 0} \;&=\; 1 \\
  \mathcal{H}^\mathrm{production}_{K_{0}^{*}(1430)^{+}, 0, \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{K_{0}^{*}(1430)^{+}, 0, 0} \;&=\; 1 \\
  \mathcal{H}^\mathrm{production}_{K_{0}^{*}(1950)^{+}, 0, \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{K_{0}^{*}(1950)^{+}, 0, 0} \;&=\; 1 \\
  \mathcal{H}^\mathrm{production}_{K_{0}^{*}(700)^{+}, 0, \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{K_{0}^{*}(700)^{+}, 0, 0} \;&=\; 1 \\
  \mathcal{H}^\mathrm{production}_{K_{2}^{*}(1430)^{+}, 0, \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K_{2}^{*}(1980)^{+}, 0, \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K_{3}^{*}(1780)^{+}, 0, \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K_{4}^{*}(2045)^{+}, 0, \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K^{*}(1410)^{+}, 0, \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K^{*}(1680)^{+}, 0, \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K^{*}(892)^{+}, 0, \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{decay}_{\Sigma(1385)^{0}, 0, \frac{1}{2}} \;&=\; 1 \\
  \mathcal{H}^\mathrm{decay}_{\Sigma(1660)^{0}, 0, \frac{1}{2}} \;&=\; 1 \\
  \mathcal{H}^\mathrm{decay}_{\Sigma(1670)^{0}, 0, \frac{1}{2}} \;&=\; 1 \\
  \mathcal{H}^\mathrm{decay}_{\Sigma(1750)^{0}, 0, \frac{1}{2}} \;&=\; 1 \\
  \mathcal{H}^\mathrm{decay}_{\Sigma(1775)^{0}, 0, \frac{1}{2}} \;&=\; 1 \\
  \mathcal{H}^\mathrm{decay}_{\Sigma(1940)^{0}, 0, \frac{1}{2}} \;&=\; 1 \\
  \mathcal{H}^\mathrm{decay}_{\Sigma(1915)^{0}, 0, \frac{1}{2}} \;&=\; 1 \\
  \mathcal{H}^\mathrm{decay}_{\Sigma(2030)^{0}, 0, \frac{1}{2}} \;&=\; 1 \\
  \mathcal{H}^\mathrm{decay}_{N(1650)^{+}, \frac{1}{2}, 0} \;&=\; 1 \\
  \mathcal{H}^\mathrm{decay}_{N(1675)^{+}, \frac{1}{2}, 0} \;&=\; 1 \\
  \mathcal{H}^\mathrm{decay}_{N(1680)^{+}, \frac{1}{2}, 0} \;&=\; 1 \\
  \mathcal{H}^\mathrm{decay}_{N(1700)^{+}, \frac{1}{2}, 0} \;&=\; 1 \\
  \mathcal{H}^\mathrm{decay}_{N(1710)^{+}, \frac{1}{2}, 0} \;&=\; 1 \\
  \mathcal{H}^\mathrm{decay}_{N(1720)^{+}, \frac{1}{2}, 0} \;&=\; 1 \\
  \mathcal{H}^\mathrm{decay}_{N(2190)^{+}, \frac{1}{2}, 0} \;&=\; 1 \\
  \mathcal{H}^\mathrm{production}_{K_{0}^{*}(1430)^{+}, 0, - \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K_{0}^{*}(1950)^{+}, 0, - \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K_{0}^{*}(700)^{+}, 0, - \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K_{2}^{*}(1430)^{+}, 0, - \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K_{2}^{*}(1980)^{+}, 0, - \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K_{3}^{*}(1780)^{+}, 0, - \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K_{4}^{*}(2045)^{+}, 0, - \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K^{*}(1410)^{+}, 0, - \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K^{*}(1680)^{+}, 0, - \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K^{*}(892)^{+}, 0, - \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{\Sigma(1385)^{0}, \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{\Sigma(1660)^{0}, \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{\Sigma(1670)^{0}, \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{\Sigma(1750)^{0}, \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{\Sigma(1775)^{0}, \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{\Sigma(1940)^{0}, \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{\Sigma(1915)^{0}, \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{\Sigma(2030)^{0}, \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{N(1650)^{+}, \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{N(1675)^{+}, \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{N(1680)^{+}, \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{N(1700)^{+}, \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{N(1710)^{+}, \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{N(1720)^{+}, \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{N(2190)^{+}, \frac{1}{2}, 0} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K_{2}^{*}(1430)^{+}, 1, \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K_{2}^{*}(1980)^{+}, 1, \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K_{3}^{*}(1780)^{+}, 1, \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K_{4}^{*}(2045)^{+}, 1, \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K^{*}(1410)^{+}, 1, \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K^{*}(1680)^{+}, 1, \frac{1}{2}} \;&=\; 1+0i \\
  \mathcal{H}^\mathrm{production}_{K^{*}(892)^{+}, 1, \frac{1}{2}} \;&=\; 1+0i \\
  m_{0} \;&=\; 4.101931740046389 \\
  m_{1} \;&=\; 1.115683 \\
  m_{2} \;&=\; 0.49367700000000003 \\
  m_{3} \;&=\; 0.1349768 \\
\end{aligned}\end{split}\]