Analyticity#
Branch points of \(\rho(s)\)#
Investigation of Section 2.1.2 in [Aitchison, 2015].
\[\displaystyle \frac{\sqrt{\frac{\left(s - \left(m_{1} - m_{2}\right)^{2}\right) \left(s - \left(m_{1} + m_{2}\right)^{2}\right)}{s}}}{\sqrt{s}}\]
Or, assuming both decay products to be of unit mass:
\[\displaystyle \frac{\sqrt{s - 4}}{\sqrt{s}}\]

<Figure size 640x480 with 0 Axes>

Physical vs. unphysical sheet#
Interactive reproduction of Figure 49.1 on PDG2020, §Resonances, p.2. The formulas below come from a relativistic_breit_wigner_with_ff()
with \(L=0\). As phase space factor, we used the square root of BreakupMomentumSquared
instead of the default PhaseSpaceFactor
, because this introduces only one branch point in the \(s\)-plane (namely the one over the nominator).
\[\displaystyle \mathrm{Physical:} \quad \frac{\Gamma_{0} m_{0}}{\Gamma_{0} m_{0}^{2} \sqrt{- \frac{\left(s - \left(m_{1} - m_{2}\right)^{2}\right) \left(s - \left(m_{1} + m_{2}\right)^{2}\right)}{s \left(m_{0}^{2} - \left(m_{1} - m_{2}\right)^{2}\right) \left(m_{0}^{2} - \left(m_{1} + m_{2}\right)^{2}\right)}} + m_{0}^{2} - s}\]
\[\displaystyle \mathrm{Unphysical:} \quad \frac{\Gamma_{0} m_{0}}{- \frac{i \Gamma_{0} m_{0}^{2} \sqrt{\frac{\left(s - \left(m_{1} - m_{2}\right)^{2}\right) \left(s - \left(m_{1} + m_{2}\right)^{2}\right)}{s}}}{\sqrt{\left(m_{0}^{2} - \left(m_{1} - m_{2}\right)^{2}\right) \left(m_{0}^{2} - \left(m_{1} + m_{2}\right)^{2}\right)}} + m_{0}^{2} - s}\]